• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1332
  • 486
  • 258
  • 207
  • 60
  • 45
  • 34
  • 28
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • Tagged with
  • 2976
  • 2976
  • 476
  • 466
  • 409
  • 342
  • 283
  • 269
  • 263
  • 206
  • 200
  • 193
  • 193
  • 188
  • 188
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1091

Tuning Zinc Oxide Layers Towards White Light Emission

Chirakkara, Saraswathi 01 1900 (has links) (PDF)
White light emitting diodes (LED) have drawn increasing attention due to their low energy consumption, high efficiency and potential to become primary lighting source by replacing conventional light sources. White light emission is usually generated either by coating yellow phosphor on a blue-LED or blending red, green and blue phosphor in an appropriate ratio. Maintaining appropriate proportions of individual components in the blend is difficult and the major demerit of such system is the overall self-absorption, which changes the solution concentration. This results in uncontrolled changes in the whiteness of the emitted light. Zinc Oxide (ZnO), a wide bandgap semiconductor with a large exciton binding energy at room temperature has been recognized as a promising material for ultraviolet LEDs and laser diodes. Tuning of structural, optical and electrical properties of ZnO thin films by different dopants (Lithium, Indium and Gallium) is dealt in this thesis. The achievement of white light emission from a semiconducting material without using phosphors offers an inexpensive fabrication technology, good luminescence, low turn-on voltage and high efficiency. The present work is organized chapter wise, which has 8 chapters including the summary and future work. Chapter 1: Gives a brief discussion on the overview of ZnO as an optoelectronic material, crystal structure of semiconductor ZnO, the effect of doping, optical properties and its possible applications in optoelectronic devices. Chapter 2: Deals with various deposition techniques used in the present study, includes pulsed laser deposition and thermal evaporation. The experimental set up details and the deposition procedures are described in detail. A brief note on the structural characterization equipments, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the optical characterization techniques namely Raman spectroscopy, transmission spectroscopy and photoluminescence (PL) spectroscopy is presented. The electrical properties of the films were studied by current- voltage, capacitance - voltage and Hall Effect measurements and the experimental details are discussed. Chapter 3: High quality ZnO/Si heterojunctions fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without using buffer layers are discussed in this chapter. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent resistivity, current- voltage measurements and RT capacitance-voltage (C-V) analysis. ZnO thin film showed the lowest resistivity of 6.4x10-3 Ω.cm, mobility of 7 cm2/V.sec and charge carrier concentration of 1.58x1019cm-3 at RT. The charge carrier concentration and the barrier height (BH) were calculated to be 9.7x1019cm-3 and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated by using the thermionic emission (TE) model were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10-7 A/cm2K2 than the theoretical value (32 A/cm2K2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of σ2=0.035 V. By implementing GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm2K2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. Chapter 4: This chapter describes the structural and optical properties of Li doped ZnO thin films and the properties of ZnO/Li doped ZnO multilayered thin film structures. Thin films of ZnO, Li doped ZnO (ZLO) and multilayer of ZnO and ZLO (ZnO/ZLO) were grown on silicon and Corning glass substrates by pulsed laser deposition technique. Single phase formation and the crystalline qualities of the films were analyzed by X-ray diffraction and Li composition in the film was investigated to be 15 Wt % by X-ray photoelectron spectroscopy. Raman spectrum reveals the hexagonal wurtzite structure of ZnO, ZLO and ZnO/ZLO multilayer, confirms the single phase formation. Films grown on Corning glass show more than 80 % transmittance in the visible region and the optical band gaps were calculated to be 3.245, 3.26 and 3.22 eV for ZnO, ZLO and ZnO/ZLO respectively. An efficient blue emission was observed in all films that were grown on silicon (100) substrate by photoluminescence (PL). PL measurements at different temperatures reveal that the PL emission intensity of ZnO/ZLO multilayer was weakly dependent on temperature as compared to the single layers of ZnO and ZLO and the wavelength of emission was independent of temperature. Our results indicate that ZnO/ZLO multilayer can be used for the fabrication of blue light emitting diodes. Chapter 5: This chapter is divided in to two parts. The fabrication and characterization of In doped ZnO thin films grown on Corning glass substrate is discussed in the first section. Zinc Oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along the c-direction with wurtzite structure and are highly transparent with an average transmittance of more than 80 % in the visible wavelength region. The energy band gap was found to be decreasing with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to be decreasing initially with doping concentration and subsequently increasing. The XPS and Raman spectrum confirm the presence of indium in indium doped ZnO thin films. The photoluminescence spectrum showed a tunable red light emission with different In concentrations. Undoped and In doped ZnO (IZO) thin films were grown on Pt coated silicon substrates (Pt/Si) to fabricate Pt/ZnO:Inx Schottky contacts (SC) is discussed in the second section. The SCs were investigated by conventional two probe current-voltage (I-V) measurement and by the I-V spectroscopy of conductive atomic force microscopy (C-AFM). X-ray diffraction technique was used to examine the thin film quality. Changes in various parameters like Schottky barrier height (SBH) and ideality factor (IF) as a function of temperature were presented. The estimated BH was found to be increasing and the IF was found to be decreasing with increase in temperature. The variation of SBH and IF with temperature has been explained by considering the lateral inhomogeneities in nanometer scale lengths at metal–semiconductor (MS) interface. The inhomogeneities of SBH in nanometer scale length were confirmed by C-AFM. The SBH and IF estimated from I-V spectroscopy of C-AFM showed large deviation from the conventional two probe I-V measurements. IZO thin films showed a decrease in SBH, lower turn on voltage and an enhancement in forward current with increase in In concentration. Chapter 6: In this chapter the properties of Ga doped ZnO thin films with different Ga concentrations along with undoped ZnO as a reference is discussed. Undoped and Ga doped ZnO thin films with different Ga concentrations were grown on Corning glass substrates by PLD. The structural, optical and electrical properties of Ga doped ZnO thin films are discussed. The XRD, XPS and Raman spectrum reveal the phase formation and successful doping of Ga on ZnO. All the films show good transmittance in the visible region and the photoluminescence of Ga doped ZnO showed a stable emission in the blue- green region. The resistivity of Ga doped ZnO thin films was found to be first decreasing and then increasing with increase in Ga concentrations. Chapter 7: The effect of co-doping to ZnO on the structural, optical and electrical properties was described in this chapter. Ga and In co-doped ZnO (GIZO) thin films together with ZnO, In doped ZnO (IZO), Ga doped ZnO (GZO), IZO/GZO multilayer for comparison, were grown on Corning glass and boron doped Si substrates by PLD. GIZO showed better structural, optical and electrical properties compared with other thin films. The Photoluminescence spectra of GIZO showed a strong white light emission and the current-voltage characteristics showed relatively lower turn on voltage and larger forward current. The CIE co-ordinates for GIZO were observed to be (0.31, 0.33) with a CCT of 6650 K, indicating a cool white light and established a possibility of white light emitting diodes. Finally the chapter 8 presents the summary derived out of the work and a few suggestions on future work.
1092

Growth Aspects And Phonon Confinement Studies On Ion Beam Sputter Deposited Ultra Thin Films

Balaji, S 11 1900 (has links)
The broad theme of the present research investigation is on the preparation and characterization of the ultra thin films. The emerging field of nano science and technology demands the realization of different materials in nanometer dimension and a comprehensive understanding of their novel properties. Especially, the properties of the semiconducting materials in the nano dimensions are quite different from their bulk phase. A phase transition from semimetalic to semiconducting nature occurs at a thickness < 5nm of Sb ultra thin films. These facts emphasize the need for preparing these materials as nano layers and studying their properties as a function their size. Among the various characterization methods available to study the structure and the interfaces, Raman spectroscopy has proved to be a useful technique. In addition to revealing the structural information, Raman spectroscopy can bring out the quantum size effects in the lattice vibrational spectra of lower dimensional solids, stress state of the film in the initial growth stages, chemical nature of materials etc. Raman spectroscopy studies on the quantum structure of Ge and Sb are limited. This is attributed to the two serious limitations of the conventional backscattering of Raman signal. 1. The back scattered Raman signal intensity from the ultra thin layer could be below the detection limit. 2. The lower penetration depth of the lasers could inhibit the information from the buried layers. These limitations could be overcome to a major extent by employing an optical interference technique called IERS. This is basically an anti-reflection structure consisting minimum of three layers. These three layers are essential for achieving the interference conditions. The thicknesses of each layer were calculated using a matrix method. IERS structure consists of 1. A reflecting layer at the bottom of the stack (Platinum or Aluminum) 2. The second layer which is grown above the reflecting layer is a transparent dielectric layer, which introduces the necessary phase shift and hence it is called phase layer.(SiO2 or CeO2) 3. The top ultra thin layer which is to be investigated (Ge or Sb), is grown over the dielectric film and it is the layer which absorbs the most of the incident exciting light and it is called the absorbing layer. In this trilayer structure the thickness of the phase layer and the absorbing layer are adjusted in such a way that the light reflected from the air-ultra thin layer interface and the dielectric-reflector interface are equal in amplitude but opposite in phase. This leads to the destructive interference and a perfect anti-reflection condition is achieved. This enhances the near surface local field and results in the enhanced Raman signal. Regarding the reflection layer, thermally evaporated Al films were used. But the surface studies revealed a large surface roughness of 2.7nm for area of 2 µm×2µm. Also Al is known to react with oxygen and formation of an oxide layer is favored. In an effort to overcome these problems, a platinum layer was chosen instead of Al as a reflecting layer. Dual ion beam sputter deposition was employed to prepare the platinum films and to study the surface property of the films prepared at different secondary ion current density. Thus the process parameters to get the Pt film with the required surface properties were optimized. To prepare the required phase layer, optical thin films of Ceria were used. The optical and structural property of ceria is found to be sensitive to the process parameters. Hence a new deposition technique for preparing the CeO2 thin films was adopted. This technique is called Dual ion beam Sputter Deposition (DIBSD). This technique involves, two ion sources (Kaufman type). One source is used to sputter the target, which is called the primary ion source and the other one is used to assist the growing film, which is called the secondary ion source. Both argon and oxygen were fed into the secondary ion source and oxygen ions in the mixture of the gases (Ar +O2) react with the growing film and the oxygen stoichiometry in the film is maintained. Also the secondary ion bombardment of the growing film helps in the densification and it leads to the increase in the refractive index of the ceria films. The films were found to grow with a preferential orientation along (111) direction. The optical properties of the films were studied by using the transmission spectra of the films from the spectrophotometer. Powder X-Ray diffraction, and Raman spectroscopy, were employed to study the structural properties. Atomic Force Microscopy was used to examine the surface topography and to estimate the surface statistics. A stress free ceria film with a high refractive index of 2.36 at 600nm was prepared for a secondary ion beam current density of 150µA/cm2 and a beam energy of 150 eV. Raman spectra and X-ray diffraction data of these films have revealed the formation of point defects in these films as a function of secondary ion current density. Germanium (Ge) ultra thin layers were prepared by using Ion Beam Sputter Deposition (IBSD) as this technique has a good control over the rate of deposition apart from various other advantages. The Ge ultra thin films were prepared on the multilayer stacks with Al or Pt as a reflecting layer. The germanium films were prepared for the various thicknesses ranging from 1-10 nm. These films were prepared on the multilayer stack of reflecting layer and phase layer. The films were prepared for the different substrate temperatures from 40 °C to 300 °C. The films thus prepared have been analyzed by Interference Enhanced Raman Spectroscopy (IERS) for the structural and quantum size effects, by RBS for the thickness and to study interface diffusion, and Atomic Force Microscopy (AFM) for the analysis of nano structure of the grown films and also for the surface statistics. The thickness of the Ge films was found to be same as that had been calculated from the rate of deposition of the films. The films showed increase in the grain sizes with increase in the thickness of the films. The nanostructure of the films from AFM images confirms this observation. IERS of the films shows the transition from the compressive to stress free nature of the film for the nominal thickness of 1 & 2 nm. The quantum size effects of the films show the asymmetric broadening and peak shift and these observations were studied using the spatial correlation model. The TEM studies on the samples with Pt as a reflecting layer show influence of the underlying layer of CeO2 by the formation Moiré fringes. Antimony (Sb) films were prepared for the different thicknesses (3-10nm) and at different substrate temperatures (40 °C - 200 °C) on the Pt/CeO2 multilayer stacks as the absorbing layer. IERS studies on the films were performed and the results are as follows. Sb films show crystallization with increase in thickness from 3nm to 4nm. The films show amorphous to crystalline transition for the substrate temperature of 200 °C. Quantum size effects on the samples due to the phonon confinement were analyzed by the spatial correlation model. The atomic force microscopic measurements for the nanostructural information on the samples showed that the grain sizes of the films increase with increase in the thickness. Also the surface morphology shows a definite change in the features for the transition of amorphous to crystallization phase. Chapter 1 introduces the importance of Ge and Sb in the present day technologies. The current state of research on these two materials has been discussed. The importance of ceria and Pt films has been highlighted in the context of IERS and for the applications elsewhere. The advantages and disadvantages of ion beam sputter deposition have been described. The importance of Raman spectroscopy as a characterization tool for the nano structures has been shown in this chapter along with an introduction on Raman spectroscopy. Also, the importance of the other complimentary characterization techniques has been discussed. Chapter 2 presents the experimental details used to deposit and characterize the thin films. Details of IBSD and DIBSD processes are given. The characterization pertaining to structural, surface, optical and compositional properties are dealt in detail. Method to compute the optical constants of a transparent film is also given. Chapter 3 presents the properties of reflecting layers. Structural, surface and the compositional (presence of Ar ion) properties of the DIBSD platinum thin films are presented. Chapter 4 presents the optical, structural and surface properties of DIBSD ceria thin films as a function of process parameters. Chapter 5 deals with the growth and Raman analysis of ultra thin Ge films with Al and Pt as reflecting layers. Chapter 6 deals with the growth and Raman analysis of ultra thin Sb films. Chapter 7 gives the summary of the thesis and the future scope of the work.
1093

Electrostatic layer-by-layer assembly of hybrid thin films using polyelectrolytes and inorganic nanoparticles

Peng, Chunqing 01 April 2011 (has links)
Polymer/inorganic nanoparticle hybrid thin films, primarily composed of functional inorganic nanoparticles, are of great interest to researchers because of their interesting electronic, photonic, and optical properties. In the past two decades, layer-by-layer (LbL) assembly has become one of the most powerful techniques to fabricate such hybrid thin films. This method offers an easy, inexpensive, versatile, and robust fabrication technique for multilayer formation, with precisely controllable nanostructure and tunable properties. In this thesis, various ways to control the structure of hybrid thin films, primarily composed of polyelectrolytes and indium tin oxide (ITO), are the main topics of study. ITO is one of the most widely used conductive transparent oxides (TCOs) for applications such as flat panel displays, photovoltaic cells, and functional windows. In this work, polyethyleneimine (PEI) was used to stabilize the ITO suspensions and improve the film buildup rate during the LbL assembly of poly(sodium 4-styrenesulfonate) (PSS) and ITO. The growth rate was doubled due to the stronger interaction forces between the PSS and PEI-modified ITO layer. The assembly of hybrid films was often initiated by a polyelectrolyte precursor layer, and the characteristics of the precursor layer were found to significantly affect the assembly of the hybrid thin films. The LbL assembly of ITO nanoparticles was realized on several substrates, including cellulose fibers, write-on transparencies, silicon wafers, quartz crystals, and glasses. By coating the cellulose fibers with ITO nanoparticles, a new type of conductive paper was manufactured. By LbL assembly of ITO on write-on transparencies, transparent conductive thin films with conductivity of 10⁻⁴ S/cm and transparency of over 80 % in the visible range were also prepared. As a result of this work on the mechanisms and applications of LbL grown films, the understanding of the LbL assembly of polyelectrolytes and inorganic nanoparticles was significantly extended. In addition to working with ITO nanoparticles, this thesis also demonstrated the ability to grow bicomponent [PEI/SiO₂]n thin films. It was further demonstrated that under the right pH conditions, these films can be grown exponentially (e-LbL), resulting in much thicker films, consisting of mostly the inorganic nanoparticles, in much fewer assembly steps than traditional linearly grown films (l-LbL). These results open the door to new research opportunities for achieving structured nanoparticle thin films, whose functionality depends primarily on the properties of the nanoparticles.
1094

Studies On The Electrical Properties Of Titanium Dioxide Thin Film Dielectrics For Microelectronic Applications

Kurakula, Sidda Reddy 10 1900 (has links)
The scaling down of Complementary Metal Oxide Semiconductor (CMOS) transistors requires replacement of conventional silicon dioxide layer with higher dielectric constant (K) material for gate dielectric. In order to reduce the gate leakage current, and also to maximize gate capacitance, ‘high K’ gate oxide materials such as Al2O3, ZrO2, HfO2, Ta2O5, TiO2, Er2O3, La2O3, Pr2O3, Gd2O3, Y2O3, CeO2 etc. and some of their silicates such as ZrxSi1–xOy, HfxSi1–xOy, AlxZr1–xO2 etc. are under investigation. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternate gate dielectric are (a) permittivity, band gap and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the materials/process used in CMOS devices and (f) reliability. In this study titanium dioxide (TiO2) is chosen as an alternate to silicon dioxide (SiO2). This thesis work is aimed at the study of the influence of process parameters like deposition rate, substrate temperature and annealing temperature on the electrical properties like maximum capacitance, dielectric constant, fixed charge, interface trapped charge and leakage current. For making this analysis we have used p–type single crystal silicon (<100>) as substrates and employed direct current (DC) reactive magnetron sputtering method with Titanium metal as target and Oxygen as reactive gas. TiO2 thin films have been deposited with an expected thickness of 50 nm with different deposition rates starting from 0.8 nm/minute to 2 nm/minute with different substrate temperatures (ambient temperature to 500ºC). Some of the samples are annealed at 750ºC in oxygen atmosphere for 30 minutes. SENTECH make Spectroscopic Ellipsometer is used for analyzing the optical properties such as thickness, refractive index etc. The thicknesses of all the samples that are extracted from the Ellipsometry are varying from 35 ± 2 nm to 50 ± 5 nm. Agilent make 4284A model L−C−R meter along with KarlSUSS wafer probe station is used for the C − V measurements and Keithley make 6487 model Pico ammeter/Voltage source is used for the I−V measurements. MOS capacitors have been fabricated with Aluminium as top electrode to perform the bi directional Capacitance−Voltage and also Current−Voltage analysis. The X–ray diffraction studies on the samples deposited at 500ºC showed that the films are amorphous. Dielectric constant (K) and effective substrate doping concentration (Na), flat band voltage (VFB), hysteresis, magnitude of fixed charges (Qf) as well as interface states density (Dit') and Equivalent Oxide Thickness (EOT) are obtained from the bi directional C−V analysis. A maximum dielectric constant of 18 is achieved with annealed samples. The best value of fixed charge density we have achieved is 1.2 x1011 per cm2 corresponding to the deposition rate of 2.0 nm/minute and with 500ºC substrate temperature. The ranges of Qf values that we have obtained are varying from 1.2x 1011 − 1.0 x1012 per cm2. It was also found that, the samples deposited at higher substrate temperatures show lower Qf values than the samples deposited at lower temperatures. The same trend is observed in case of interface states density also. The range of Dit' values we have obtained are in the range of 1.0 x 1012 cm–2eV–1 to 9x1012 cm–2eV–1. The best value of Dit' we have obtained is 1.0x1012 cm–2 eV–1 for the sample deposited at 0.8 nm/minute deposition rate and with substrate temperature of 400ºC. From the flat band voltage values of different set of samples, it was found that the flat band voltage is decreasing and in turn trying to approach the analytical value for the films deposited at higher deposition rates. The minimum EOT that we have achieved is 11 nm that corresponds to the film, which is annealed at 750ºC in oxygen atmosphere. From the I−V analysis it was found that the leakage current density is increasing with increase in substrate temperature and the same trend is observed with annealed films also. The minimum leakage current density achieved is 1.72x10–6 A/cm2 at a gate bias of 1V (corresponding field of 0.3 MV/cm). From the time dependent dielectric breakdown analysis it was found that the leakage current is exhibiting a constant value during the entire voltage stress time of 23 minutes. From the I–V characteristics it was found that the leakage current is following the Schottky emission characteristics at lower electric fields (< 1MV/cm) and is following the Fowler–Nordheim tunneling mechanism at higher electric fields. Since our aim is to study the electrical properties of titanium dioxide thin films for the application as high K gate dielectric in microelectronic applications more emphasis is given on the electrical properties. The maximum dielectric constant we have achieved is in the comparable range of the values for this parameter. The leakage current density values obtained are higher than the required for the microelectronic devices, where as the interface state density values and fixed charge density values are in the same range of values that are reported with this particular oxide and more care has to be taken to minimize these parameters. The EOT values we have achieved are also falling into the range of values that it actually takes as it was reported in the literature.
1095

Composition Analysis Of NiTi Thin Films Sputtered From A Mosaic Target : Synthesis And Simulation

Vincent, Abhilash 11 1900 (has links) (PDF)
No description available.
1096

Investigations On Electrodes And Electrolyte Layers For Thin Film Battery

Nimisha, C S 05 1900 (has links) (PDF)
The magnificent development of on-board solutions for electronics has resulted in the race towards scaling down of autonomous micro-power sources. In order to maintain the reliability of miniaturized devices and to reduce the power dissipation in high density memories like CMOS RAM, localized power for such systems is highly desirable. Therefore these micro-power sources need to be integrated in to the electronic chip level, which paved the way for the research and development of rechargeable thin film batteries (TFB). A Thin film battery is defined as a solid-state electrochemical source fabricated on the same scale as and using the same type of processing techniques used in microelectronics. Various aspects of deposition and characterization of LiCoO2/LiPON/Sn thin film battery are investigated in this thesis. Prior to the fabrication of thin film battery, individual thin film layers of cathode-LiCoO2, electrolyte-LiPON and anode-Sn were optimized separately for their best electrochemical performance. Studies performed on cathode layer include theoretical and experimental aspects of deposition of electrochemically active LiCoO2 thin films. Mathematical simulation and experimental validation of process kinetics involved in sputtering of a LiCoO2 compound target have been performed to analyze the effect of process kinetics on film stoichiometry. Studies on the conditioning of a new LiCoO2 sputtering target for various durations of pre-sputtering time were performed with the help of real time monitoring of glow discharge plasma by OES and also by analysing surface composition, and morphology of the deposited films. Films deposited from a conditioned target, under suitable deposition conditions were electrochemically tested for CV and charge/discharge, which showed an initial discharge capacity of 64 µAh/cm2/µm. Studies done on the deposition and characterization of solid electrolyte layer-LiPON have shown that, sputtering from powder target can be useful for certain compounds like Li3PO4 in which breaking of ceramic target and loss of material are severe problems. An ionic conductivity of 1.1 x10-6 S/cm was obtained for an Nt/Nd ratio of 1.42 for a RF power density of 3 W/cm2 and N2 flow of 30 sccm. Also the reasons for reduction in ionic conductivity of LiPON thin films on exposure to air have been analyzed by means of change in surface morphology and surface chemistry. Ionic conductivity of 2.8 x10-6 S/cm for the freshly deposited film has dropped down to 9.9 x10-10 S/cm due to the reaction with moisture, oxygen and carbon content of exposed air. Interest towards a Li-free thin film battery has prompted to choose Sn as the anode layer due to its relatively good electrochemical capacity compared with other metallic thin films and ease of processing. By controlling the rate of deposition of Sn, thin films of different surface morphology, roughness and crystallinity can be obtained with different electrochemical performance. The reasons for excessive volume changes during lithiation/delithiation of a porous Sn thin film have been analyzed with the aid of physicochemical characterization techniques. The results suggest that the films become progressively pulverized resulting in increased roughness with an increase in lithiation. Electrochemical impedance data suggest that the kinetics of charging becomes sluggish with an increase in the quantity of Li in Sn-Li alloy. Thin film batteries with configuraion LiCoO2/LiPON/Sn were fabricated by sequential sputter deposition on to Pt/Si substartes. Pt/Cu strips were used as the current collector leads with a polymer packaging. Electrochemical charge/discharge studies revealed discharge capacities in the range 6-15 µAh/cm2/µm with hundreds of repeated cycles. TFB with a higher capacity of 35 µAh/cm2/µm suffered capacity fade out after 7 cycles, for which reasons were analyzed. The surface and cross-sectional micrographs of cycled TFB showed formation of bubble like features on anode layer reducing integrity of electrolyte-anode interface. The irreversible Li insertion along with apparent surface morphology changes are most likely the main reasons for the capacity fade of the LiCoO2/LiPON/Sn TFB.
1097

Studies On CVD And ALD Of Thin Films Of Substituted And Composite Metal Oxides, Including Potential High-k Dielectrics

Gairola, Anshita 09 1900 (has links) (PDF)
The work carried out as a part of this thesis has been focussed on understanding different aspects of the chemical vapor deposition process namely, ALD / MOCVD. A large part of the thesis is aimed at solving the problem of a single-source precursor for the MOCVD process to obtain substituted metal oxide thin films. For a chemical vapor deposition technique, it is important to understand the requisite salient features of precursor for deposition of thin films. For this purpose, not only is the structural characterization of the chemical precursor is required but also an in-depth thermal analysis of the precursor to know its vapor pressure. Vapor pressure of a metalorganic complex is one of the important properties to evaluate the applicability of a metalorganic complex as a MOCV/ALD precursor. The thesis discusses a novel approach to use thermal analysis as a tool to gauge the viability of substituted metal “single source” precursor for MOCVD/ALD. The other half deals with material characterization of thin films grown by an ALD process using hydrogen and Ti(OiPr)2(tbob)2 as precursors. The films were further studied for their potential application as high-k dielectric in DRAM applications. The first chapter is an overview of topics that are relevant to the work carried out in this thesis. The chapter focuses on the description of techniques used for thin film deposition. A detailed review of CVD-type techniques (ALD/ MOCVD) is then given. Chapter1 reviews the various process parameters involved in ALD,i.e. film growth(specifically as a function of the reactant pulse length, the nature of the chemical reactant/precursor and that of the metal precursor, and purge length) and growth temperature. Following the discussion of ALD, CVD and its growth kinetics are also discussed. Chapter 1 then outlines a holistic understanding of precursors, followed the differences in requirement for using them in ALD and MOCVD. Further, an introduction to the titanium oxide (Stoichiometric titanium dioxide and various Magneli phases) system, its phase diagram, oxide properties and their applications is given. Chapter 1 concludes by delineating the scope of the work carried out which is presented in the thesis. The second chapter deals with the synthesis of a series of substituted metal “single source” precursors to be used for MOCVD of substituted metal oxides thin films. The precursor complexes were of the type AlxCr1-x (acac)3 where 0<x<1. The complexes were synthesized using the novel approach of co-synthesis and were characterized by various spectroscopic techniques. Single crystal X-ray diffraction at low temperature was carried out to understand the substitution of metal in the complex crystallographically. The substituted metal complexes synthesized and characterized in chapter 2 were further evaluated for their viability as single source precursors for MOCVD application, using thermo-gravimetry as discussed in chapter 3. Vapor pressure of these complexes was determined by using the Langmuir equation, while the enthalpies of submission and evaporation were calculated using the Clausius-Clapeyron equation. One of the composition of the series of substituted metal complexes, viz., Al0.9Cr0.1(acac)3, was employed on MOCVD reactor as precursor to obtain thin films on three substrates, Si(100), fused silica, and polycrystalline x- alumina, simultaneously. The resultant thin films were characterized using XRD, electron microscopy, FTIR, EDS, X-ray mapping, and UV-vis spectroscopy. Chapter 4 deals with the growth of titanium oxide thin films using ALD. The metal precursor used was Ti(OiPr)2(tbob)2 and the reactant gas was hydrogen. Hydrogen, a reducing gas, was deliberately used to obtain the reduced defect oxide phases of titanium, commonly called Magneli phases. The growth rate of films grown on p-Si(100) was studied with respect to the substrate temperature, vaporizer temperature, pulse duration of metal precursor and pulse duration of the reactive gas. Also, the concept of complementarity of a reaction and self-limiting behavior in a true ALD process was illustrated. The deposition conditions such as substrate temperature and reactive gas flows have been varied to optimize the phase content and the morphology of the films. The films grown were characterized to determine the various phases of titanium oxide present using XRD, TEM, FTIR spectroscopy, Raman spectroscopy, and UV-vis spectroscopy. The presence of carbon was revealed by Raman spectroscopy. By using these characterization techniques, it was concluded that the film grown is a composite made of stiochiometric TiOx matrix embedded with crystallites of (reduced) Magneli phases. Chapter 5 deals with the electrical properties of the composite thin films grown in chapter 4. the films behave as percolative capacitor which could be used for application as novel high-k dielectric material for DRAM. The effect of change in flow rates of reactive gas (H2) on the dielectric constant (k) and leakage current of the film were studied. It was found that phase composition of the film plays an important role in tuning the dielectric properties of the film was also studied. The effect of thickness of the film also studied on the dielectric properties of the film. The trend observed was correlated to the morphology of the film as a function of its thickness and the grain growth mechanism as observed from high resolution scanning electron microscopy. Further, the effect of change in substrate temperature, metal precursor pulse length, and of the metal used as top electrode, on C-V and I-V characteristics were studied. It was interesting to see that the presence of the more conductingTi5O9 (than Ti3O5) enhances the dielectric constant, which is a requisite for a high-k material for DRAM application. On the other hand, the presence of Ti5O9 also increased the leakage current in the film, which was not desirable. It therefore suggested itself that an optimum embedment of Ti5O9 in the composite helps in enhancing the dielectric constant, while maintaining a low leakage current. Under optimum conditions, a dielectric constant of 210 at 1MHz was measured with a leakage current of 17 nA. The effect of the presence of carbon in the film was studied using Raman Spectroscopy, and it was found that a high leakage was associated with films having greater carbon content. In this chapter, electrical properties of composite thin films were also compared with those of stoichiometric titanium dioxide (a known dielectric). Further, a multilayer sandwich structure was proposed, such that it had a 53 mm thick stoichiometric TiO2 layer followed by 336nm thick composite film and again a 53nm thick stoichiometric titanium dioxide layer. The dielectric characteristics of this structure were found to be better than those of either of the other two.viz., stoichiometric titanium dioxide film or the composite thin film of titanium oxide.
1098

Study Of Relaxor Ferroelectric PMN-PT Thin Films For Energy Harvesting Applications

Saranya, D 07 1900 (has links) (PDF)
The present research work mainly focuses on the fabrication of 0.85PMN-0.15PT thin film relaxor ferroelectrics for energy harvesting applications. Chapter 1 gives a brief review about why energy harvesting is required and the different ways it can be scavenged. An introduction to relaxor ferroelectrics and their characteristics structural features are discussed. A brief introduction is given about charge storage, electrocaloric effect , DC-EFM and integration over Si substrate is discussed. Finally, the specific objectives of the current research are outlined. Chapter 2 deals with the various experimental studies carried out in this research work. It gives the details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. A brief explanation of material fabrication, Microstructural and physical property measurements is discussed. Chapter3 involves the optimization process carried out to contain a phase pure PMN-PT structure without any pyrochlore phase. The optimization process is an important step in the fabrication of a thin film as the quality of any device is determined by their structural and Microstructural features. XRD, SEM, AFM were used to characterize the observed phase formation in these films. The optimizing domain images of polycrystalline 0.85PMN-0.15PT thin films on La0.5Sr0.5CoO3/ (111) Pt/TiO2/SiO2/Si substrates deposited at different oxygen partial pressures are presented. The oxygen pressure has a drastic influence on the film growth and grain morphology which are revealed through XRD and SEM characterization techniques. The presence of oxygen vacancies have found to influence the distribution of polar nanoregions and their dynamics which are visualized using domain images acquired by DC-EFM In Chapter 7 the piezoelectric response of 0.85PMN-0.15PT thin films are studied due to the electric field induced bias. From this the d33 value is calculated. d33 value is an important parameter which determines whether a material is suitable for device application (PZT). But, for a device fabrication it is important to integrate them with Si wafer which is not a straightforward work .Hence, buffer layers are used to obtain a pure perovskite PMN-PT film. We have deposited 0.85PMN-0.15PT thin films of 500 nm on a SOI wafer and tried to investigate their piezoelectric application. Chapter 8 summarizes the present study and discusses about the future work that could give more insight into the understanding of the0.85PMN-0.15 PT relaxor ferroelectric thin film.
1099

Investigations Of Magnetic Anisotropy In Ferromagnetic Thin Films And Its Applications

Sakshath, S 07 1900 (has links) (PDF)
Physical systems having dimensions smaller than, or of the same order of magnitude as, the characteristic length scale relevant to a physical property are referred to as mesoscopic physical systems. Due to the dimensions of the system, several physical properties get affected and this could reveal interesting physics which would other-wise have not been apparent. In the recent times, a lot interesting applications have resulted from such studies. The fundamental length scale in ferromagnetic systems is the exchange length. It is related to the magnetic anisotropy and exchange constants. Other length scales such as the size of a magnetic domain or a domain wall depends on the minimisation of energy associated with this length scale along with other factors such as zeeman energy, magnetostatic, magnetoelastic and anisotropy energies. Ultrathin magnetic films have thickness smaller than the exchange length. In this thickness regime, the surface of the film plays an important role. The magnetic anisotropy energy would get a significant contribution from the surface of the film and if it dominates over the volume contribution, would eventually lead to magnetisation pointing out of the plane of the film as opposed to imposition of demagnetising fields. Examples for such cases are FePt(L10 phase) films and Co(0001) films. Such films are important in memory applications where perpendicularly magnetised recording media are desired. When the lateral dimensions of thin films are reduced, demagnetising fields become even more important. Depending on the anisotropy in the system, certain domain patterns get stabilised in the final structure. This has led to important applications in the field of magnonics. The use of angular momentum transfer from spin polarised electrons to change the configuration of magnetisation of structured magnetic films has led to interesting memory and oscillator applications. The underlying physical parameter that needs to be controlled and carefully studied in all these cases is the magnetic anisotropy. It is favourable to have uniaxial magnetic anisotropy for memory and oscillators. This thesis chiefly deals with Fe/GaAs(001) systems. The choice of the physical system follows interest in spintronics where spin injection is desired into a semiconductor from a ferromagnet. The thesis is organized into chapters as follows. Chapter 1 attempts to introduce the reader to some of the basic concepts of mag-netism and some magnetic phenomena. The characteristic nature of a ferro-magnetic material is its spontaneous magnetisation due to long range ordering below the Curie temperature. But the moment is coupled, through some in-teractions, to spatial co-ordinates which leads to spatial variation of magnetic properties. Such interactions are also responsible for the formation of magnetic domains. The spatial variation of magnetic properties within a ferromagnet is called magnetic anisotropy. A major part of the thesis deals with the study of magnetic anisotropy of Fe thin films grown on GaAs(001) substrates. For a better understanding, the structure of the semiconductor is introduced first before discussing the influence of the structure of GaAs on the growth of Fe. A short description of the uniaxial magnetic anisotropy in Fe films is given before starting on an exploration of some possible reasons for it. Concepts of ferromagnetic resonance, spin torque effect and micromagnetic simulations are given. Chapter 2 gives a brief description of some of the experimental apparatus that was setup during the course of the research along with an overview of the differ-ent sample preparation and characterisation techniques used. The chapter is organised according to the general functionality of the techniques. Some con-cepts such as the use of low energy electrons, nanostructuring etc are introduced along with the corresponding techniques since it is best understood along with the instrumentation. Chapter 3 reports some surprising findings about the in-plane magnetic anisotropy in Fe films grown on an MgO underlayer. Until now, it has been understood that such films should exhibit only a four-fold magnetic anisotropy within the plane of the film. But the Fe/MgO/GaAs(001) films studied here exhibited an in-plane uniaxial magnetic anisotropy(IPUMA). IPUMA is dominant upto about 25 ML of Fe in case of Fe/MgO/GaAs(001) films whereas, in Fe/GaAs(001) films it is dominant only upto about 15 ML. Thus, the presence of the MgO film even appeared to enhance the uniaxial anisotropy as compared to the Fe/GaAs(001) films. In the ferromagnetic resonance (FMR) spectra, as many as three peaks were observed in Fe/GaAs(001) films of thickness 50 ML close to the hard axis of magnetisation. This means that three could be three energy minima possibly due to a competition between the anisotropies involved. Chapter 4 elaborates the investigations of the effect of orientation and doping con-centration of the GaAs substrate on the magnetic anisotropy of Fe/GaAs(001) films. It is found that doping the substrate (n type) reduces the strength of the IPUMA in Fe/GaAs films. In the wake of the long-standing debate of electronic structure v/s stress as the origin of the IPUMA in Ferromagnet/Semiconductor films, this result is important because it implies that the electronic structure of the Fe/GaAs interface influences the magnetic anisotropy. But stress, as a cause of IPUMA cannot be ruled out. The influence of deposition techniques on magnetic anisotropy is also investigated. Chapter 5 presents a way of manipulating magnetic anisotropy, and hence mag-netisation dynamics, by nanostructuring of epitaxial Fe films. It is based on the property that magnetic anisotropy of Fe films is thickness dependent. It is demonstrated that using techniques of nanostructuring, a 2 dimensional mag-netic system with controllable variation of local magnetic anisotropy is created. Such a system could be a potential magnonic crystal. chapter 6 demonstrates the proof of concept of a new memory device where memory is stored in the magnetic domain configuration of a ring in relation to that of a nano-wire. Switching between the memory states is acheived through spin trasfer torque of an electric current passing through the device, whereas read-out of the memory state is through the measurement of resistance of the device. Devices are made using NiFe and Co; it is seen that the behaviour of the devices can be explained taking into account the anisotropic magnetoresistance of the material used. Finally, the various results are summarised and a broad outlook is given. Some possible future research related to the topics dealt within this thesis is discussed.
1100

Fabrication and characterization of p-type CuO / n-type ZnO heterostructure gas sensors prepared by sol-gel processing techniques

Ravichandran, Ram 03 December 2009 (has links)
Increased interest in the field of sensor technology stems from the availability of an inexpensive and robust sensor to detect and quantify the presence of a specific gas. Bulk p-CuO/n-ZnO heterocontact based gas sensors have been shown to exhibit the necessary sensitivity and selectivity characteristics, however, low interfacial CuO/ZnO contact area and poor CuO/ZnO connectivity limits their effective use as gas sensors. The phase equilibria between CuO and ZnO exhibits limited solubility. By exploiting this concept, a CuO/ZnO mixed solution is formed by combining CuO and ZnO precursors using wet chemical (sol-gel) techniques. Thin films fabricated using this mixed solution exhibit a unique CuO/ZnO microstructure such that ZnO grains are surrounded by a network of CuO grains. This is highly beneficial in gas sensing applications since the CuO/ZnO heterostructure interfacial area is considerably increased and is expected to enhance sensing characteristics. This work builds on previous research by Dandeneau et al. (Thin film chemical sensors based on p-CuO/n-ZnO heterocontacts, Thin Solid Films, 2008). CuO/ZnO mixed solution thin films are fabricated using the sol-gel technique and subsequently characterized. X-ray diffraction (XRD) data confirms the phase separation between ZnO and CuO grains. Scanning electron microscopy (SEM) as well as energy dispersive spectroscopy (EDS) reveal a network of ZnO grains amidst a matrix of CuO grains. Optical and electrical characterization provide material parameters used to construct an energy band diagram for the CuO/ZnO heterostructure. Aluminum interdigitated electrodes (IDEs) are patterned on the thin film and gas sensing characteristics in the presence of oxygen and hydrogen are investigated. Optimization of the electrode geometry is explored with the aim of increasing the sensitivity of the sensor in the presence of hydrogen gas. / Graduation date: 2010

Page generated in 0.0563 seconds