• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 12
  • 11
  • 10
  • 1
  • 1
  • Tagged with
  • 87
  • 87
  • 53
  • 43
  • 26
  • 23
  • 20
  • 18
  • 17
  • 17
  • 16
  • 15
  • 15
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Contribution à la réduction des composants passifs dans les convertisseurs électroniques de puissance embarqués / Contribution to the reduction of passive components in onboard power converters

Rouhana, Najib 23 May 2017 (has links)
Le volume des convertisseurs électroniques de puissance devient lié, dans une part importante aux composants passifs qui le constituent. En particulier, les condensateurs de découplage constituent une part non négligeable de ce volume. En outre, les évolutions technologiques des composants passifs et particulièrement la densité d'énergie des condensateurs de découplage s'accroit beaucoup moins vite que la densité de puissance des composants actifs auxquels ils sont associés (transistors de puissance). D'autre part, la technologie à film plastique utilisée représente une masse non recyclable qu'il est essentiel de minimiser. Leur rôle est néanmoins fondamental pour le fonctionnement de l'ensemble. Une réduction trop importante de leur valeur conduit à une augmentation de perturbations conduites et rayonnées, voire à une instabilité non contrôlée du bus de tension du véhicule. Cette instabilité, pouvant générer des surtensions importantes, pourrait conduire à une destruction du variateur. Dans certains cas, cette démarche de dimensionnement est compliquée par le fait que d'autres systèmes abonnés au bus source de tension continue participent également aux perturbations conduites, en particulier un deuxième variateur triphasé à découpage. Dans ce cas, un partage du même condensateur de découplage peut-être envisagé. Ceci dit, on est confronté à deux problèmes couplés : - D'une part, le dimensionnement des condensateurs reste lié au courant efficace (du point de vue de l'auto échauffement aussi bien que de l'ondulation de tension qui est également liée à la capacité, autre critère dimensionnant) qu'ils seront amenés à supporter. Il est donc souhaitable de mettre en œuvre des stratégies de réduction de ce courant. - D'autre part, la faible résistance série a tendance à réduire de manière importante le facteur d'amortissement de l'impédance de bus continu vue par l'entrée de l'onduleur. Il convient alors de s'assurer de la maîtrise de la résonance du bus dans une telle situation. Ce travail de recherche explore deux approches complémentaires permettant de minimiser la taille des condensateurs requis et de maîtriser les ondulations de tension à l'entrée du convertisseur : - Développer une stratégie de modulation aussi satisfaisante que possible pour le pilotage d'un onduleur triphasé classique à deux niveaux et trois bras de pont. La contrainte supplémentaire, liée aux risques de résonnance du bus continu, doit être analysée et sera un des objectifs des travaux proposés. - Etudier l’impact que peut avoir une stratégie de modulation sur l’ensemble de la chaine de traction électrique. Des contraintes additionnelles liées à la stratégie de modulation d'un variateur de vitesse automobile sont aussi prises en comptes comme par exemple : - La compensation des effets non-linéaires qui sont dus au comportement de l’onduleur de tension ; - La minimisation du stress exercé sur le condensateur de découplage partagé de manière commune entre deux onduleurs de tension, en termes d’ondulation de tension à ses bornes et de la valeur efficace du courant absorbé. Les résultats théoriques ont été validés expérimentalement sur deux bancs de tests : un premier dédié pour des essais à faible puissance sur une charge passive et un deuxième, monté au site de Lardy de Renault, dédié pour des essais à haute puissance sur une charge réaliste. / The volume of the electronic power converters becomes linked, in a large part, to the passive component which constitute it. In particular, the decoupling capacitors are a significant part of this volume. Moreover, the technological evolutions of the passive components and in particular the energy density of the decoupling capacitors increase much less rapidly than the power density of the active components to which they are associated. On the other hand, the plastic film technology used represents a non-recyclabl mass which it is essential to minimize. The role of the film capacitor is nevertheless fundamental for the functioning of the whole inverter. Too much reduction of their value leads to an increase in conducted and radiated disturbances, or to an uncontrolled instability of the vehicle DC bus voltage. This instability, which can generate significant overvoltages, could lead to a destruction of the switching power devices of the voltage source inverter. In some cases, this design approach could become complicated when other systems could be connected t the same DC voltage source bus, such as a second voltage source inverter. Hence, the same DC link capacitor is shared between the two inverters. Thus, it becomes much solicited and conducted disturbances may be generated. That said, we are confronted with two coupled problems. On the one hand, the design of the capacitors remains linked to the RMS current. It is therefore desirable to implement strategies to reduce this current. On the other hand, the low series resistance tends to reduce significantly the damping factor of the DC bus impedance seen by the input of the inverter. Hence, it is then necessary to ensure control of the resonance of the bus in such a situation. This research explores two complementary approaches to minimize the size of the required capacitors an to control the voltage ripples at the input of the converter: - Develop a P WM strategy that is as satisfactory as possible for controlling a conventional two-level three-phase inverter. The additional constraint, related to the resonance risks of the DC bus, must be analyzed and is one of the objectives of the proposed works. - Study the impact of P WM strategies on the entire electrical traction chain. Additional constraints related to the P WM strategy are also taken into account such as - Compensation for non-linear effects due to the behavior of the voltage inverter; - Minimization of the stress exerted on the decoupling capacitor commonly shared between two voltage source inverters in terms of voltage ripple across its terminals and the rms value of the absorbed current. Theoretical and simulation results have been validated experimentally on two test benches: one dedicated for low power tests on a passive load and the second one, mounted at the Lardy site of Renault, dedicated for hi h ower tests on a dynamic electrical machine.
82

Planejamento integrado de filtros harmônicos e reguladores de tensão em sistemas de distribuição utilizando um algoritmo multiobjetivo / Integrated planning of harmonic filters and voltage regulators in distribution systems using a multiobjective algorithm

Santos, Felipe Santana 24 February 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The increase in linear and non-linear loads experienced by Brazil in recent years has changed the way distribution networks are planned and Operated. In addition, the competitiveness of the market and the demand for the improvement in power quality indexes mean that current e orts are increasingly focused on areas such as voltage profile control and voltage harmonic distortion control. This work deals, exactly, with the Integrated control of voltage and harmonic voltage distortion (volt/thd) in distribution systems, within the scope of planning, through the insertion of passive harmonics filters and voltage regulators. To solve the problem in question, a multiobjective algorithm, the NSGA-II, is applied, since the presented problem can be treated as a combinatorial optimization problem. The power summation method is used as an alternative for the resolution of the load flow. While the current injection method is used as a calculation of the harmonic flow. The mathematical models of the network components were presented, taking into account the influence of frequency, in a detailed way. The proposed algorithm was applied in benchmark systems, a 34-bus and a 104-bus, the systems were simulated with and without the presence of the devices for comparison and validation of the results. / O aumento de cargas, lineares e não-lineares, vivenciado pelo Brasil nos últimos anos, tem alterado a maneira com as redes de distribuição são planejadas e operadas. Além disso, a competitividade do mercado e exigência pela melhoria nos índices de qualidade da energia fazem com que os esforços atuais sejam cada vez mais direcionados para áreas como o controle do perfil de tensão e o controle das distorções harmônicas de tensão. Esta dissertação trata, exatamente, do controle integrado de tensão e distorção harmônica de tensão (volt/dht) em sistemas de distribuição, no âmbito do planejamento, através da inserção de filtros harmônicos passivos e reguladores de tensão. Para resolver o problema em questão, um algoritmo multiobjetivo, o NSGA-II, é aplicado, uma vez que o problema apresentado é tratado como um problema de otimização combinatória. O método da soma de potências é utilizado como alternativa para a resolução do fluxo de carga. Enquanto que o método da injeção de correntes é utilizado como cálculo do fluxo de harmônicos. Os modelos matemáticos dos componentes da rede foram apresentados, levando-se em consideração a influência da frequência, de forma detalhada. O algoritmo proposto foi aplicado em sistemas teste de 34 e 104 barras e os sistemas foram simulados com e sem a presença dos dispositivos para efeito de comparação e validação dos resultados.
83

Power System Stabilizing Controllers - Multi-Machine Systems

Gurrala, Gurunath 01 1900 (has links) (PDF)
Electrical Power System is one of the most complex real time operating systems. It is probably one of the best examples of a large interconnected nonlinear system of varying nature. The system needs to be operated and controlled with component or system problems, often with combinatorial complexity. In addition, time scales of operation and control can vary from milliseconds to minutes to hours. It is difficult to maintain such a system at constant operating condition due to both small and large disturbances such as sudden change in loads, change in network configuration, fluctuations in turbine output, and various types of faults etc. The system is therefore affected by a variety of instability problems. Among all these instability problems one of the important modes of instability is related to dynamic instability or more precisely the small perturbation oscillatory instability. Oscillations of small magnitude and low frequency (in the range of 0.1Hz to 2.5Hz) could persist for long periods, limiting the power transfer capability of the transmission lines. Power System Stabilizers (PSS) were developed as auxiliary controllers on the excitation system to improve the system damping performance by modulating the generator excitation voltage. However, the synthesis of an effective PSS for all operating conditions still remains a difficult and challenging task. The design and tuning of PSS for robust operation is a laborious process. The existing PSS design techniques require considerable expertise, the complete system information and extensive eigenvalue calculations which increases the computational burden as the system size increases. Conventional automatic voltage regulator (AVR) and PSS designs are based on linearized models of power systems which fail to stabilize the system over a wide range of operating conditions. In the last decade or so, a variety of nonlinear control techniques have become available. In this thesis, an attempt is made to explore the suitability of some of these design techniques for designing excitation controllers to enhance small perturbation stability of power systems over a wide range of operating and system conditions. This thesis first proposes a method of designing power system stabilizers based on local measurements alone, in multi-machine systems. Next, a method has been developed to analyze and quantify the small signal performance benefits of replacing the existing AVR+PSS structure with nonlinear voltage regulators. A number of new nonlinear controller designs have been proposed subsequently. These include, (a) a new decentralized nonlinear voltage regulator for multi machine power systems with a single tunable parameter that can achieve effective trade of between both the voltage regulation and small signal objectives, (b) a decentralized Interconnection and Damping Assignment Passivity Based Controller in addition to a proportional controller that can achieve all the requirements of an excitation system and (c) a Nonlinear Quadratic Regulator PSS using Single Network Adaptive Critic architecture in the frame work of approximate dynamic programming. Performance of all the proposed controllers has been analyzed using a number of multi machine test systems over a range of operating conditions.
84

Conversor SEPIC modificado com acoplamento magnético série e célula multiplicadora de tensão / Modified SEPIC converter with serial magnetic coupling and voltage multiplier cell

Kravetz, Fábio Inocêncio 29 March 2018 (has links)
As fontes renováveis de energia, em especial a energia solar fotovoltaica vem ganhando espaço nos últimos anos devido ao avanço da tecnologia, redução dos custos e redução das fontes não-renováveis. Os painéis fotovoltaicos isoladamente ou para pequenas aplicações geram uma baixa tensão de saída e a adequação dos níveis de tensão fornecidos em sua saída aos requeridos pela concessionária de energia elétrica é um desafio. Neste trabalho é apresentada uma nova estrutura modificada da topologia do conversor SEPIC que usa as técnicas de acoplamento magnético série e células multiplicadoras de tensão em conjunto, afim de obter um elevado ganho de tensão, visando a aplicação em fontes renováveis de energia. Optou-se pela solução não isolada, pois esta apresenta diversas vantagens em relação a solução isolada, como: menor peso, volume, custo e maior eficiência energética devido a menores perdas de potência nos indutores acoplados. Também, a utilização da indutância de dispersão, que é um parâmetro intrínseco de um acoplamento magnético, permite a operação com comutação suave ZCS (ZCS, do inglês Zero Current-Switching) no interruptor, aumentando a eficiência da estrutura com a redução das perdas por comutação. No decorrer do trabalho são realizadas as análises das etapas de operação de diversos conversores a partir do conversor SEPIC modificado, evolui-se pela adição de técnicas elevadoras de tensão até a estrutura proposta neste trabalho. Por fim, é realizado o controle em malha fechada utilizando um controlador PID analógico que fornece uma resposta rápida e consequente correção a possíveis mudanças na variável controlada. Os resultados teóricos e experimentais do conversor proposto são descritos neste trabalho para validar as análises desenvolvidas e demonstrar a eficiência da estrutura. O protótipo é desenvolvido para uma aplicação com potência nominal de 200 W, tensão nominal de saída igual a 450 V e uma tensão de entrada variando entre 20 V e 40 V. O rendimento obtido para o conversor proposto operando na frequência de 35 kHz na potência nominal é de 91,28% e eficiência igual a 89,04% para a potência nominal de 200 W na frequência de 90 kHz. / The renewable energy resources, in special the photovoltaic energy has been achieve more space in last years due to technology advances, cost reduction and decrease of the non-renewable energy sources. The photovoltaic panels in isolation or to small applications generate a low output voltage and to comply with of voltage levels provided in panel’s output to those required by electric power concessionaire is a challenge. In this work is presented a new structure modified of the SEPIC converter topology who uses the coupling magnetic series and voltage multiplier cell techniques together, in order to obtain a high voltage gain aiming at application in renewable energy resources. It was has been choosen non-isolated solution, because this present several advantages in relation to the isolated solution, such as: lower weight, volume, cost and high energy efficiency due to smaller power losses in the coupled inductors. The use leakage inductance, who is an intrinsic parameter of the a magnetic coupling, allows soft-switching operation ZCS in switch, increasing the structure’s efficiency with reduction of switching losses. During the work are perform the analysis of the operation steps of several converters as of the modified SEPIC converter and evolves by addition high voltage techniques until the structure proposed in this work. Finally, is performed the closed loop control using the analog PID controller who provides a fast response and consequent correction to possible changes in the controlled variable. The theoretical and experimental results of the proposed converter are described in this work to validate the developed analysis and demonstrate the structure’s efficiency. The prototype is developed to a application with nominal power of 200 W, nominal output voltage equal 450 V and an input voltage varying between 20 V and 40 V. The efficiency obtained to proposed converter operating in frequency of the 35 kHz in nominal power is 91,28% and efficiency equal 89,04% to nominal power in frequency of the 90 kHz.
85

Hydropower generator and power system interaction

Bladh, Johan January 2012 (has links)
After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Important tools for research, development and analysis are suitable mathematical models, numerical simulation methods and laboratory equipment. This doctoral thesis is devoted to studies of the electromechanical interaction between hydropower units and the power system. The work encompasses development of mathematical models, empirical methods for system identification, as well as numerical and experimental studies of hydropower generator and power system interaction. Two generator modelling approaches are explored: one based on electromagnetic field theory and the finite element method, and one based on equivalent electric circuits. The finite element model is adapted for single-machine infinite-bus simulations by the addition of a network equivalent, a mechanical equation and a voltage regulator. Transient simulations using both finite element and equivalent circuit models indicate that the finite element model typically overestimates the synchronising and damping properties of the machine. Identification of model parameters is performed both numerically and experimentally. A complete set of equivalent circuit parameters is identified through finite element simulation of standard empirical test methods. Another machine model is identified experimentally through frequency response analysis. An extension to the well-known standstill frequency response (SSFR) test is explored, which involves measurement and analysis of damper winding quantities. The test is found to produce models that are suitable for transient power system analysis. Both experimental and numerical studies show that low resistance of the damper winding interpole connections are vital to achieve high attenuation of rotor angle oscillations. Hydropower generator and power system interaction is also studied experimentally during a full-scale startup test of the Nordic power system, where multiple synchronised data acquisition devices are used for measurement of both electrical and mechanical quantities. Observation of a subsynchronous power oscillation leads to an investigation of the torsional stability of hydropower units. In accordance with previous studies, hydropower units are found to be mechanically resilient to subsynchronous power oscillations. However, like any other generating unit, they are dependent on sufficient electrical and mechanical damping. Two experimentally obtained hydraulic damping coefficients for a large Francis turbine runner are presented in the thesis.
86

A Study of Experience Mapping Based Predictive Controller as Applied to Switching Converters

Nayak, Namratha January 2015 (has links) (PDF)
Experience Mapping based Prediction Control (EMPC) is a new type of controller presented in literature, which is based on the concept of Human Motor Control (HMC). During the developmental phase, called the initial learning phase, the controller records the experience in a knowledge base, through online interactions with the system to be controlled. This knowledge base created using the experience maps is termed as Experience Mapped Knowledge Base (EMK). The controller envisages the development of EMK only through interaction with the system, without the need for knowledge of the detailed plant model. The EMPC controls the system through prediction of actions based on the mapped experiences of EMK. Depending on the nature of control required for the system chosen, various strategies can be used to achieve control using the EMK. The above controller has previously been utilized for motion control applications. In the present work an effort has been made to study the suitability of the EMPC for the voltage regulation of switching converters. The plant chosen for the control study is a discontinuous conduction mode (DCM) buck converter. The parameter to be monitored for the purpose of control is the load voltage. The control input from the EMPC to the converter is a duty ratio value based pulse-width modulated (PWM) signal. Two strategies of control have been proposed: steady state control and transient control. Steady state control action maintains the steady state output voltage at the required value for a given load. The transient control action is used to improve the transient performance of the system. Iterative predictive action and iterative transient actions are used to facilitate convergence of the output voltage to within the required range in presence of non-linearities and uncertainties in the system. Impulse action is introduced to further improve the transient performance of the system. The EMPC is compared a proportional-integral (PI) controller for the given DCM buck system.
87

Multi-objective power quality optimization of smart grid based on improved differential evolution

Saveca, John 10 1900 (has links)
In the modern generation, Electric Power has become one of the fundamental needs for humans to survive. This is due to the dependence of continuous availability of power. However, for electric power to be available to the society, it has to pass through a number of complex stages. Through each stage power quality problems are experienced on the grid. Under-voltages and over-voltages are the most common electric problems experienced on the grid, causing industries and business firms losses of Billions of dollars each year. Researchers from different regions are attracted by an idea that will overcome all the electrical issues experienced in the traditional grid using Artificial Intelligence (AI). The idea is said to provide electric power that is sustainable, economical, reliable and efficient to the society based on Evolutionary Algorithms (EAs). The idea is Smart Grid. The research focused on Power Quality Optimization in Smart Grid based on improved Differential Evolution (DE), with the objective functions to minimize voltage swells, counterbalance voltage sags and eliminate voltage surges or spikes, while maximizing the power quality. During Differential Evolution improvement research, elimination of stagnation, better and fast convergence speed were achieved based on modification of DE’s mutation schemes and parameter control selection. DE/Modi/2 and DE/Modi/3 modified mutation schemes proved to be the excellent improvement for DE algorithm by achieving excellent optimization results with regards to convergence speed and elimination of stagnation during simulations. The improved DE was used to optimize Power Quality in smart grid in combination with the reconfigured and modified Dynamic Voltage Restorer (DVR). Excellent convergence results of voltage swells and voltage sags minimization were achieved based on application of multi-objective parallel operation strategy during simulations. MATLAB was used to model the proposed solution and experimental simulations. / Electrical and Mining Engineering / M. Tech. (Electrical Engineering)

Page generated in 0.0927 seconds