• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] THE STUDY OF CONIC CURVES BY ORIGAMI / [pt] O ESTUDO DAS CÔNICAS ATRAVÉS DO ORIGAMI

BRUNA MAYARA BATISTA RODRIGUES 24 February 2016 (has links)
[pt] O estudo das Curvas Cônicas tem sido cada vez menos abordado no Ensino Médio e, nos poucos casos em que tal abordagem é apresentada, verifica-se uma prioridade indevida à memorização de equações. Por outro lado, embora a eficiência do Origami não seja divulgada com frequência no ensino de assuntos matemáticos de maior complexidade, existe uma geometria axiomática consistente por trás desta arte de dobrar papéis que a torna um instrumento de ensino capaz de explorar, com clareza, propriedades e definições de assuntos matemáticos. O presente trabalho pretende unir esses dois elementos, curvas cônicas e origami, com o intuito de desenvolver conceitos do primeiro a partir de construções do segundo. Desta forma, faz-se um relato histórico e conceitual sobre as Curvas Cônicas; descreve-se a importância do Origami e seu uso no ensino da Matemática; apresenta-se o estudo das sete possibilidades para uma única dobragem no Origami conhecidas como os axiomas de Huzita-Hatori com o objetivo de sugerir o uso das dobraduras no estudo da elipse, da parábola e da hipérbole no Ensino Médio das escolas do país. A fim de divulgar o Origami como um recurso eficiente e interessante no ensino das Cônicas e validar a pesquisa apresentada, uma oficina foi desenvolvida, aplicada, avaliada e aprimorada num pequeno grupo de estudantes de Licenciatura em Matemática e seus resultados estão aqui expostos. / [en] The study of Conic Curves has been each time less approached at High School and, in those few cases it is presented, it s possible to verify an improperly prioritized of equation memorizations. On the other hand, although the efficiency of the Origami is not often divulged at teaching mathematical subjects of greater complexity, there is a consistent axiomatic geometry behind this art of folding papers that makes it an a teaching tool able to explore, clearly, the properties and definitions of mathematical subjects. This study aims to join these two elements, conic curves and origami, in order to develop concepts from the first to building the second one. This way, it can make a historical and conceptual essay about the Conic Curves; describing the importance of the Origami and its use in Mathematics teaching; presenting the study of the seven possibilities for a single folding in Origami known as Huzita-Hatori s axioms in order to suggest the use of the folding in the study of ellipse, parable and hyperbole at High Schools all over the country. Divulging the Origami as an efficient and interesting resource in the teaching of the Conics and validate this research, a workshop was developed, applied, evaluated and improved in a small group of students of Degree in Mathematics and its results are exposed here.
2

[en] CONSTRUCTION OF THE CONICS USING THE GEOMETRIC DRAWING AND CONCRETE INSTRUMENTS / [pt] CONSTRUÇÕES DAS CÔNICAS UTILIZANDO O DESENHO GEOMÉTRICO E INSTRUMENTOS CONCRETOS

JOHANN SENRA MOREIRA 21 February 2018 (has links)
[pt] O presente trabalho tem como objetivo facilitar o estudo das cônicas e ainda despertar o interesse do aluno para o desenho geométrico. Será apresentado que as curvas cônicas estão em nosso dia a dia, não só como beleza estética, mas também provocando fenômenos físicos amplamente utilizado pela arquitetura e engenharia civil, como acústica e reflexão da luz. Utilizaremos instrumentos para desenhar curvas que despertem a curiosidade dos alunos e faremos uso das equações e lugares geométricos a fim de demostrar tais recursos. Pretende-se assim que ao adquirir tais conhecimentos o aluno aprimore seu entendimento matemático e amplie seu horizonte cultural. / [en] The present research aims to facilitate the study of the conics and also to arouse the interest of the student for the geometric drawing. The conic curves will be presented not only as they are in our day to day as aesthetic beauty but also as responsible for the physical phenomena widely used by architecture and civil engineering as well as acoustics and reflection of light. We will use instruments to draw curves that arouse the curiosity of the students, making use of the equations and locus in order to demonstrate such resources. It is intended that the student acquire this knowledge, improving his mathematical understanding and broadening his cultural horizon.
3

[en] CONICS AND GRAPHS OF FUNCTIONS OF ONE VARIABLE / [pt] CÔNICAS E GRÁFICOS DE FUNÇÕES DE UMA VARIÁVEL

LEONARDO DE SOUZA LEITE 19 April 2016 (has links)
[pt] O objetivo deste trabalho é apresentar conteúdos necessários para a construção de uma base sólida em Matemática do Ensino Fundamental e Médio, mas que são em geral mal assimilados pelos alunos. Inicialmente apresentaremos o plano cartesiano, equações de uma e duas variáveis, funções de uma variável real e gráfico de funções. Passaremos então ao estudo de curvas simples e bem conhecidas dos alunos em geral, como a circunferência, e chegaremos até as cônicas rotacionadas. A partir daí, procuramos relacionar as duas partes do trabalho, mostrando como as cônicas podem ser vistas como gráficos de função de uma variável. Pretende-se que este trabalho possa ser utilizado por professores do Ensino Fundamental e Médio em sala de aula, pois boa parte do conteúdo apresentado faz parte do currículo mínimo da Secretaria de Educação do Estado do Rio de Janeiro. Propomos atividades teóricas e computacionais, utilizando o software Geogebra para construção de curvas no plano cartesiano. / [en] The objective of this paper is to present content needed to build a solid foundation in mathematics from primary and secondary schools, but are generally poorly assimilated by the students. Initially present the Cartesian plane, equations of one and two variables, functions of a real variable and function graph. Then we pass to the study of simple curves and well known to students in general, as the circumference, and arrive until the conical rotated. From there, we try to relate the two parts of the work, showing how the taper can be seen as a variable function graphs. It is intended that this work can be used by teachers of primary and secondary education in the classroom, because much of the content presented is part of the minimum curriculum of the Department of Education of the State of Rio de Janeiro. We propose theoretical and computational activities, using the Geogebra software to build curves in the Cartesian plane.
4

[en] THE PONCELET S PORISM / [pt] O PORISMO DE PONCELET

ERICSON DUARTE DO NASCIMENTO 13 December 2017 (has links)
[pt] A proposta deste trabalho é apresentar e demonstrar o Porismo de Poncelet, tanto o caso base para triângulos quanto o caso geral para um polígono qualquer. Sendo o Porismo de Poncelet considerado um dos mais importantes teoremas da Geometria Projetiva, serão utilizados neste trabalho conceitos de Geometria Projetiva que muitas vezes não são familiares da maioria dos professores de matemática da rede básica de ensino. O caso base para triângulos juntamente com as cônicas podem ser bem explorados no ensino médio com a utilização de software de geometria como Geogebra que foi ferramenta fundamental na elaboração das figuras utilizadas nas demonstrações apresentadas nessa dissertação. / [en] The purpose of this work is to present and demonstrate the Poncelet s Porism, both the base case for triangles and the general case for any polygon. Being the Poncelet s Porism considered one of the most important theorems of Projective Geometry, we will use concepts of Projective Geometry that are not often familiar to most mathematics teachers in the basic teaching network. The base case for triangles together with the conics can be well explored in high school with the use of geometry software such as Geogebra that was a fundamental tool in the elaboration of the figures used in the demonstrations presented in this essay.

Page generated in 0.0282 seconds