31 |
[en] ASSESSEMENT OF MODELS BASED ON ARTIFICIAL NEURAL NETWORKS FOR PERFORMANCE ANALYSIS OF ENGINES AND GENERATORS / [pt] AVALIAÇÃO DE MODELOS BASEADOS EM REDES NEURAIS ARTIFICIAIS PARA ANÁLISE DE DESEMPENHO DE MOTORES E GERADORESNAIARA RINCO DE MARQUES E CARMO 09 August 2022 (has links)
[pt] Diante da crise ambiental dos dias atuais, desenvolver tecnologias de
menor impacto negativo e promover ações de eficiência energética tornam-se
imprescindíveis para conciliar produtividade e redução de emissões. Neste contexto, aprofundar-se no estudo de motores de combustão interna modelando
seu funcionamento se apresenta como uma ferramenta bastante interessante,
seja por ensaios em bancada ou modelagens. O presente trabalho buscou desenvolver modelos usando diferentes arquiteturas de Redes Neurais Artificiais
(RNAs) para obter parâmetros de performance de Motores de Combustão Interna movidos a gás natural e a misturas de diesel – biodiesel – etanol. Para
o primeiro caso, foram coletados dados de 5 motores visando a avaliação da
eficiência térmica, consumo específico, temperatura de exaustão, e para o segundo a base de dados contempla um motor, sobre o qual foram avaliados, em
acréscimo aos parâmetros mencionados, os coeficientes de compressão e expansão da politrópica, o consumo específico de etanol, a taxa máxima de liberação
de calor e a pressão máxima. Para as redes que apresentaram melhores resultados, foram construídas superfícies de resposta a fim de analisar os modelos
sobre a perspectiva do fenômeno que representam. Foi possível obter modelos
com boa representatividade dos parâmetros mencionados (obtendo valores de
R2 acima de 70 por cento para dados de treino e teste), exceto para os dois coeficientes
da politrópica. Neste caso, embora os erros fossem relativamente satisfatórios,
as superfícies de resposta atingiram extremos que não condizem com a teoria
relacionada. Por outro lado, foi possível construir um modelo para a eficiência
térmica a partir do consumo e abertura da válvula, com R2 de 99 por cento para treino
e teste. Isto se explica pelo fato de que a primeira variável de entrada é parte
da equação que calcula o parâmetro em questão, e a segunda está ligada à
relação ar-combustível da mistura. / [en] Faced with the current environmental crisis, developing technologies with
less negative impact and promoting energy efficiency actions are essential to
reconcile productivity and emissions reduction. In this context, the study of internal combustion engines by modeling their operation presents itself as a very
interesting tool, whether by bench tests or modeling. The present work aimed
to develop models using different architectures of Artificial Neural Networks
(ANNs) to obtain performance parameters of Internal Combustion Engines
powered by natural gas and blends of diesel – biodiesel – ethanol. For the
first case, 5 engines were considered to evaluate the thermal efficiency, specific consumption, exhaust temperature, and for the second case, the database
includes an engine, on which, in addition to the mentioned parameters, the
compression and expansion polytropic coefficients were evaluated, the specific
consumption of ethanol, the maximum rate of heat release and the maximum
pressure. For the networks that presented better results, response surfaces were
made in order to analyze the models from the perspective of the phenomenon
they represent. It was possible to obtain models with good representation of
the mentioned parameters (obtaining R2 values above 70 percent for training and
test data), except for the two polytropic coefficients. In this case, although the
errors were relatively satisfactory, the response surfaces reached extremes that
do not agree with the related theory. On the other hand, it was possible to
build a model for thermal efficiency from consumption and throttle, with R2 of
99 percent for training and testing. This is explained by the fact that the first input
variable is part of the equation that calculates this parameter, and the second
is linked to the air-fuel ratio of the mixture.
|
32 |
[pt] DIMENSIONAMENTO DE UMA ESTOCAGEM DE GÁS NATURAL SOB INCERTEZA DE DEMANDA E PREÇO DE GNL / [en] SIZING OF A NATURAL GAS STORAGE UNDER DEMAND AND PRICE UNCERTAINTYLILIAN ALVES MARTINS 26 February 2019 (has links)
[pt] No Brasil, a demanda de gás natural possui um comportamento estocástico
devido ao consumo das usinas termelétricas, as quais operam em regime de
complementariedade ao sistema hidrelétrico. O suprimento de gás natural para
estas usinas depende em grande parte do fornecimento de Gás Natural Liquefeito
(GNL) spot, importado através de navios metaneiros. Em função do tempo de
trânsito dos navios, as compras de GNL devem ocorrer com antecedência em
relação ao despacho hidrotérmico. Este descasamento de tempo incentiva a
utilização de mecanismos de compatibilização da dinâmica do setor elétrico com a
dinâmica da cadeia do gás natural. Uma possibilidade de aumentar a sinergia entre
estes domínios é utilizar uma estocagem de gás natural para inserir flexibilidade
no sistema. A viabilidade da estocagem dependerá do preço do gás e da demanda
ao longo do horizonte de análise. O objetivo deste trabalho é a construção de um
modelo de programação linear para dimensionar a capacidade de uma estocagem
de gás natural sob incerteza de demanda e de preço de GNL. O modelo
apresentado é um híbrido de otimização estocástica, construído para considerar a
incerteza do consumo de gás, com otimização robusta, construído para levar em
conta a incerteza relacionada aos preços do GNL. O modelo caracteriza o perfil de
risco do supridor de gás natural pela utilização do Conditional Value-at-Risk
(CVaR) e utiliza um critério de segurança que reproduz um processo de
suprimento avesso a risco de déficit. Ao final do trabalho é apresentado um estudo
de caso hipotético, utilizando dados públicos do setor elétrico e de gás natural,
para avaliar a implantação da estocagem para 2.000 cenários de demanda e
patamares distintos de robustez à variação do preço do GNL. / [en] In Brazil, natural gas demand has stochastic behavior since gas-fired power
plants operate in conjunction with the hydroelectric system. Natural gas supply to
these plants relies upon Liquefied Natural Gas (LNG), imported through
cryogenic ships. LNG acquisitions must occur before the natural gas demand is
known because of the time of displacement of the ships. This lack of synchronism
stimulates the use of harmonizing mechanisms between the electric sector and the
natural gas sector. In this context, natural gas storage could be used to introduce
flexibility into the system and increase synergy between natural gas supply and
demand dynamics. However, the economic performance of the storage will
depend on actual gas prices and demand behavior during the period of analysis.
This study aims to construct a linear programming model to determine the size of
a natural gas storage under demand and LNG price uncertainty. The model is a
hybrid of a stochastic optimization algorithm – developed to consider gas demand
uncertainty – and a robust optimization algorithm – built to take into account
LNG price uncertainty. A convex combination between Conditional Value-at-Risk
(CVaR) and expected value is also used to indicate the supplier risk profile as well
as a security criterion, introduced to represent a deficit-averse supply process. At
the end, a hypothetic case is presented to evaluate the implementation of a natural
gas storage. The case presented uses public data from the Brazilian electric and
gas natural sectors and considers 2.000 demand scenarios and various levels of
robustness to LNG price variation.
|
Page generated in 0.029 seconds