• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] PREDICTING TRENDS IN THE STOCK MARKET / [pt] PREDIZENDO TENDÊNCIAS NA BOLSA DE VALORES

JOAO PAULO FORNY DE MELO 02 August 2018 (has links)
[pt] Investidores estão sempre à procura de uma vantagem. Porém, tradicionais teorias financeiras nos dizem que tentar predizer tendências na bolsa de valores é um esforço em vão, uma vez que seguem um passeio aleatório, i.e., um processo estocástico ou randômico. Além disso, afirma-se que o mercado é eficiente de maneira que sempre incorpora e reflete toda informação relevante, o que torna impossível bater o mercado. Recentemente, com o crescimento da web e aumento da disponibilidade de dados em conjunto com a evolução dos algoritmos de Aprendizado de Máquina, diversos trabalhos tem aplicado técnicas de Processamento de Linguagem Natural em notícias financeiras e dados de redes sociais para prever variações do preço de ações. Consequentemente, estão surgindo fortes evidências que o mercado pode, em algum grau, ser previsto. Este trabalho descreve o desenvolvimento de uma aplicação baseada em Aprendizado de Máquina para realizar a predição de tendências no mercado de ações, i.e., variações negativas, positivas ou neutras de preços com granularidade de minuto. Avaliamos o sistema usando dados de cotação de ações da B3 (Brasil Bolsa Balcão), antiga BM&FBOVESPA, e um dataset de tópicos mais relevantes buscados no Google Search e seus artigos relacionados, que são disponibilizados pela plataforma Google Trends e coletados, minuto a minuto, de 15/08/2016 até 10/07/2017. Os experimentos mostram que esses dados provêem informação relevante para a tarefa em questão, onde conseguimos uma acurácia de 69.24 porcento para a predição de tendências do ativo PETR4, criando alguma / [en] Investors are always looking for an edge. However, traditional economic theories tell us that trying to predict short-term stock price movements is wasted effort, since it approximate a random walk, i.e., a stochastic or random process. Besides, these theories state that the market is efficient enough to always incorporate and reflect all relevant information, making it impossible to beat the market. In recent years, with the growth of the web and data availability in conjunction with advances in Machine Learning, a number of works are using Natural Language Processing to predict share price variations based on financial news and social networks data. Therefore, strong evidences are surfacing that the market can, in some level, be predicted. This work describes the development of an application based on Machine Learning to predict trends in the stock market, i.e., positive, negative or neutral price variations with minute granularity. We evaluate our system using B3 (Brasil Bolsa Balcão), formerly BM&FBOVESPA, stock quotes data, and a dataset with the most relevant topics of Google Search and its related articles, provided by the Google Trends platform and collected, minute by minute, from 08/15/2016 to 07/10/2017. The experiments show that this data provides useful information to the task at hand, in which we achieve 69.24 per cent accuracy predicting trends for the PETR4 stock, creating some leverage to make profits possible with intraday trading.
2

[en] THE EFFECT OF ABNORMAL RETURNS ON INVESTORS SEARCH FOR INFORMATION / [pt] O EFEITO DOS RETORNOS ANORMAIS NAS BUSCAS POR INFORMAÇÃO DOS INVESTIDORES

FLAVIA CRISTINA S DA C MIRAGAYA 17 May 2018 (has links)
[pt] Neste trabalho, estudo o comportamento dos arbitradores ao se depararem com variações nos níveis de preços das ações, mais especificamente, analisando a forma como eles buscam informações sobre esses ativos. Para isso, testo e confirmo a hipótese de que os retornos anormais das ações levam os investidores a buscarem ativamente mais informações sobre essas empresas, usando dados de volume de buscas no Google. Adicionalmente, analiso de forma separada o impacto de retornos anormais negativos e de retornos anormais positivos sobre o volume de buscas do Google, chegando à conclusão de que os retornos negativos têm um efeito maior sobre o volume de buscas que os efeitos positivos. / [en] I study the behavior of arbitrageurs when they are faced with changes in stock price levels, more specifically analyzing the way they seek information about these assets. I test and confirm the hypothesis that abnormal stock returns prompt investors to seek actively information about these companies by using Google search volume data. Furthermore, I study the separate effects of negative abnormal returns and positive abnormal returns on Google search volumes, and conclude that negative returns cause a greater impact on the search volumes than positive returns.
3

[pt] DE MICRO À MACRO: ENSAIOS EM ANÁLISE TEXTUAL / [en] FROM MICRO TO MACRO: ESSAYS IN TEXTUAL ANALYSIS

LEONARDO CAIO DE LADALARDO MARTINS 04 July 2022 (has links)
[pt] Este estudo explora fontes de dados não convencionais como dados textuais de jornais e pesquisas de internet do Google Trends em dois problemas empíricos: (i) analisar o impacto da mobilidade sobre o número de casos e mortes por Covid-19; (ii) nowcasting do PIB em alta-frequência. O primeiro artigo usa fontes de dados não estruturados como controle para fatores comportamentais não observados e encontra que um aumento na mobilidade residencial diminui significativamente o número de casos e mortes num horizonte de quatro semanas. O segundo artigo usa fontes de dados não estruturadas para fazer um nowcasting semanal do PIB, mostrando que dados textuais e Google Trends pode aumentar a qualidade das projeções (medido pelo EQM, EAM e outras métricas) comparado com as expectativas de mercado do Focus como base. Em ambos casos, dados não estruturados reveleram-se fontes ricas de informação não codificadas em indicadores estruturados convencionais. / [en] This study exploits non-conventional data sources such as newspaper textual data and internet searches from Google Trends in two empirical problems: (i) analysing the impacts of mobility on cases and deaths due to Covid-19; (ii) nowcasting GDP in high-frequency. The first paper resorts to unstructured data to control for non-observable behavioural effects and finds that an increase in residential mobility significantly reduces Covid-19 cases and deaths over a 4-week horizon. The second paper uses unstructured data sources to nowcast GDP on a weekly basis, showing that textual data and Google Trends can significantly enhance the quality of nowcasts (measured by MSE, MAE and other metrics) compared to Focus s market expectations as a benchmark. In both cases, unstructured data was revealed to be a valuable source of information not encoded in structured indicators.

Page generated in 0.0295 seconds