1 |
[pt] NOWCASTING DE PIB COM MODELOS DE MACHINE LEARNING: EVIDÊNCIA DOS EUA / [en] NOWCASTING GDP WITH MACHINE LEARNING MODELS: EVIDENCE FROM THE USLUCAS SEABRA MAYNARD DA SILVA 25 May 2020 (has links)
[pt] O presente trabalho investiga o uso de métodos de Machine Learning
(ML) para efetuar estimativas para o trimestre corrente (nowcasts) da taxa
de crescimento do PIB Real dos EUA. Esses métodos conseguem lidar
com um grande volume de dados e séries com calendários de publicação
dessincronizados, e os nowcasts são atualizados cada vez que novos dados
são publicados ao longo do trimestre. Um exercício pseudo-out-of-sample
é proposto para avaliar a performance de previsão e analisar o padrão
de seleção de variável desses modelos. O método de ML que merece o
maior destaque é o Target Factor, que supera o usualmente adotado DFM
para alguns vintages dentro do trimestre. Ademais, as variáveis selecionadas
apresentam consistência entre os modelos e com a intuição. / [en] This paper examines the use of Machine Learning (ML) models to
compute estimates of current-quarter US Real GDP growth rate (nowcasts).
These methods can handle large data sets with unsynchronized release
dates, and nowcasts are updated each time new data are released along the
quarter. A pseudo-out-of-sample exercise is proposed to assess forecasting
performance and to analyze the variable selection pattern of these models.
The ML method that deserves more attention is the Target Factor, which
overcomes the usually adopted dynamic factor model for some predictions
vintages in the quarter. We also analyze the variables selected, which are
consistent between models and intuition.
|
2 |
[pt] ENSAIOS SOBRE NOWCASTING COM DADOS EM ALTA DIMENSÃO / [en] ESSAYS ON NOWCASTING WITH HIGH DIMENSIONAL DATAHENRIQUE FERNANDES PIRES 02 June 2022 (has links)
[pt] Em economia, Nowcasting é a previsão do presente, do passado recente ou
mesmo a previsão do futuro muito próximo de um determinado indicador.
Geralmente, um modelo nowcast é útil quando o valor de uma variável de
interesse é disponibilizado com um atraso significativo em relação ao seu
período de referência e/ou sua realização inicial é notavelmente revisada
ao longo do tempo, se estabilizando somente após um tempo. Nesta tese,
desenvolvemos e analisamos vários métodos de Nowcasting usando dados
de alta dimensão (big data) em diferentes contextos: desde a previsão
de séries econômicas até o nowcast de óbitos pela COVID-19. Em um
de nossos estudos, comparamos o desempenho de diferentes algoritmos de
Machine Learning com modelos mais naive na previsão de muitas variáveis
econômicas em tempo real e mostramos que, na maioria das vezes, o
Machine Learning supera os modelos de benchmark. Já no restante dos
nossos exercícios, combinamos várias técnicas de nowcasting com um grande
conjunto de dados (incluindo variáveis de alta frequência, como o Google
Trends) para rastrear a pandemia no Brasil, mostrando que fomos capazes
de antecipar os números reais de mortes e casos muito antes de estarem
disponíveis oficialmente para todos. / [en] Nowcasting in economics is the prediction of the present, the recent past or
even the prediction of the very near future of a certain indicator. Generally,
a nowcast model is useful when the value of a target variable is released
with a significant delay with respect to its reference period and/or when
its value gets notably revised over time and stabilizes only after a while.
In this thesis, we develop and analyze several Nowcasting methods using
high-dimensional (big) data in different contexts: from the forecasting of
economic series to the nowcast of COVID-19. In one of our studies, we
compare the performance of different Machine Learning algorithms with
more naive models in predicting many economic variables in real-time and
we show that, most of the time, Machine Learning beats benchmark models.
Then, in the rest of our exercises, we combine several nowcasting techniques
with a big dataset (including high-frequency variables, such as Google
Trends) in order to track the pandemic in Brazil, showing that we were
able to nowcast the true numbers of deaths and cases way before they got
available to everyone.
|
3 |
[pt] DE MICRO À MACRO: ENSAIOS EM ANÁLISE TEXTUAL / [en] FROM MICRO TO MACRO: ESSAYS IN TEXTUAL ANALYSISLEONARDO CAIO DE LADALARDO MARTINS 04 July 2022 (has links)
[pt] Este estudo explora fontes de dados não convencionais como dados textuais de jornais e pesquisas de internet do Google Trends em dois problemas
empíricos: (i) analisar o impacto da mobilidade sobre o número de casos e mortes por Covid-19; (ii) nowcasting do PIB em alta-frequência. O primeiro artigo
usa fontes de dados não estruturados como controle para fatores comportamentais não observados e encontra que um aumento na mobilidade residencial
diminui significativamente o número de casos e mortes num horizonte de quatro
semanas. O segundo artigo usa fontes de dados não estruturadas para fazer um
nowcasting semanal do PIB, mostrando que dados textuais e Google Trends
pode aumentar a qualidade das projeções (medido pelo EQM, EAM e outras
métricas) comparado com as expectativas de mercado do Focus como base. Em
ambos casos, dados não estruturados reveleram-se fontes ricas de informação
não codificadas em indicadores estruturados convencionais. / [en] This study exploits non-conventional data sources such as newspaper
textual data and internet searches from Google Trends in two empirical
problems: (i) analysing the impacts of mobility on cases and deaths due to
Covid-19; (ii) nowcasting GDP in high-frequency. The first paper resorts to
unstructured data to control for non-observable behavioural effects and finds
that an increase in residential mobility significantly reduces Covid-19 cases
and deaths over a 4-week horizon. The second paper uses unstructured data
sources to nowcast GDP on a weekly basis, showing that textual data and
Google Trends can significantly enhance the quality of nowcasts (measured by
MSE, MAE and other metrics) compared to Focus s market expectations as
a benchmark. In both cases, unstructured data was revealed to be a valuable
source of information not encoded in structured indicators.
|
Page generated in 0.1914 seconds