• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • Tagged with
  • 22
  • 22
  • 21
  • 9
  • 9
  • 7
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

[pt] EFEITOS PLÁSTICOS DE CONCENTRAÇÃO DE TENSÃO NA RESISTÊNCIA À FADIGA / [en] PLASTIC STRESS CONCENTRATION EFFECTS IN FATIGUE STRENGTH

MENGEN LIU 16 May 2023 (has links)
[pt] Neste trabalho, o fator de gradiente de tensões elastoplástico na frente da raiz de entalhe é utilizado para investigar o efeito real do entalhe na resistência à fadiga, quantificado pelo fator de concentração de tensões à fadiga. Este é geralmente menor que o fator de concentração de tensões do entalhe, o parâmetro linear elástico (Fator de concentração de tensão) , devido à tolerância do material a trincas curtas não propagantes. Considerando que a plasticidade localizada na vizinhança da raiz do entalhe afeta o comportamento de crescimento de trincas curtas dentro da zona plástica induzida pelo entalhe, uma abordagem baseada na Mecânica da Fratura é proposta para abranger os efeitos dos campos de tensões e deformações elastoplásticas no cálculo do (Fator de concentração de tensão de fadiga). Análises bidimensionais por elementos finitos são adotadas para calcular fatores de intensidade de tensão de espécimes planos e entalhados. O modelo de encruamento de Ramberg-Osgood e a regra de Neuber são usados para obter aproximações de fatores de intensidade baseados em deformação. Para validação da metodologia, as previsões numéricas geradas são comparadas com dados experimentais de S-N coletadas da literatura para espécimes com (Fator de concentração de tensão) . Estes possuem furo circular central ou entalhes tipo U ou V, são feitos de diferentes materiais e testados sob cargas axiais com razão igual a -1, 0 ou 0,1. A comparação mostra boa concordância e prova que a solução elastoplástica proporcione maior precisão do que a linear elástica. Os resultados mais discrepantes são obtidos em razões de carga de 0 e 0,1, no entanto, eles podem ser significativamente melhorados quando é considerada a correção de efeitos de tensão média não nula. / [en] Elasto-plastic stress gradient factors ahead of notch tips are used to evaluate actual notch effects in fatigue strength, quantified by fatigue stress concentration factor (Fatigue stress concentration factor). Usually, it is smaller than the linear elastic stress concentration factor of the notch, (Stress concentration factor) , due to material tolerance to non-propagating short cracks. Considering that local plasticity around notch tips plays a significant role in the growth behavior of short cracks within the notch plastic zone, a sound mechanical methodology is proposed to account for the effects of elasto-plastic stress and strain fields in the actual (Fatigue stress concentration factor) value. Two-dimensional finite element analyses are conducted to compute stress intensity factors of smooth and notched specimens. Ramberg-Osgood model and Neuber s rule are used to achieve approximations for strain-based intensity factors. For methodology validation, numerical predictions are compared to experimental stress-life data of center, U, and V-notched plate specimens made of different materials and tested under uniaxial load ratios of −1, 0, and 0.1 collected from the literature. The comparisons show good agreement proving that the elasto-plastic solution provides more accuracy than the linear elastic one. The most discrepant results are obtained at load ratios of 0 and 0.1, and they can be significantly improved if non-zero mean stress effects are considered.
22

[pt] ANÁLISE DO COLAPSO DE ESTRUTURAS COM NÃO LINEARIDADE FÍSICA E GEOMÉTRICA / [en] COLLAPSE ANALYSIS OF STRUCTURES WITH GEOMETRIC AND MATERIAL NONLINEARITY

CARLOS JAVIER MELCHOR PLACENCIA 04 August 2020 (has links)
[pt] Neste trabalho apresentam-se três tipos de técnicas de análise do colapso estrutural através do método dos elementos finitos: análise linearizada da carga crítica, análise incremental da carga crítica e análise não linear completa. Na análise linearizada da carga crítica formulou-se um problema de autovalor empregando matrizes de rigidez baseadas na configuração indeformada da estrutura e materiais com comportamento linear elástico. No caso da análise incremental da carga crítica, o problema de autovalor foi formulado empregando matrizes de rigidez incrementais para levar em consideração os grandes deslocamentos e propriedades não lineares do material. Finalmente, na análise não linear completa a configuração deformada da estrutura e propriedades não lineares do material são atualizadas durante todo o processo incremental-iterativo até atingir a carga crítica. Desenvolveu-se uma implementação computacional para estudar as três técnicas de análise em estruturas planas como vigas, colunas, pórticos e arcos, empregando elementos isoparamétricos bidimensionais para estado plano de tensões. A configuração deformada da estrutura, devido aos grandes deslocamentos e rotações dos elementos, foi considerada através de uma formulação Lagrangeana Total, enquanto o comportamento inelástico do material foi modelado empregando um modelo elastoplástico de Von Mises (J2) com encruamento isotrópico. Nos exemplos apresentados mostrou-se a influência da não linearidade geométrica e física na estimativa de cargas críticas e no comportamento pós-crítico, podendo ocorrer bifurcações ao longo da trajetória de equilíbrio fundamental definida no espaço carga-deslocamentos. / [en] This work presents three kinds of techniques for collapse analysis using the finite element method: linear buckling analysis, nonlinear buckling analysis and full nonlinear analysis. The linear buckling analysis requires the definition of an eigenvalue problem using a stiffness matrix formulation based on the initial configuration of the structure and under the assumption of a linear elastic material behavior. In the case of nonlinear buckling analysis, the eigenvalue problem was formulated employing an incremental stiffness matrix in order to consider the effects of large displacements and nonlinear material properties in the critical load estimation. Finally, the full nonlinear analysis takes into account the deformed configuration and the nonlinear material properties of the structure, updating both of them through all the incremental-iterative process up to reaching the critical load. A Finite Element computational program, using plane stress isoperimetric bidimensional elements, was developed to study the three analysis techniques applied to plane structures such as beams, columns, frames and arches. The deformed configuration of the structure, due to large displacements and rotations, was considered through the Total Lagrangian formulation, whereas the inelastic material behavior was modeled using the Von Mises plasticity model with isotropic hardening. The examples presented in this article show the influence of geometric and material nonlinearity in the critical load estimation and the postcritical behavior, being this the reason for the potential occurrence of bifurcation points over the fundamental equilibrium path defined in the load-displacement space.

Page generated in 0.0463 seconds