291 |
Study on the Conduction Mechanism of Organic Light-Emitting Diode Using One-Dimensional Discontinuous ModelMIZUTANI, Teruyoshi, MORI, Tatsuo, KANEKO, Kazue, CHO, Don-Chan, OGAWA, Takuya 01 June 2002 (has links)
No description available.
|
292 |
Deep-UV Light Emitting Diodes: An Experimental Investigation of Characterization and Optimization TechniquesFraser, Eric M. 15 May 2005 (has links)
Light emitting diodes (LEDs) and laser diodes (LDs) have many advantages over conventional light sources. Current commercial LEDs span the spectrum from IR to near- UV. There are a variety of applications for devices that extend into the deep-UV, including biological agent detection and optical storage. The nitride material system is a set of semiconducting compounds that have wavelengths that span a broad range, from yellow to deep-UV. AlGaN has a direct bandgap that extends into the deep-UV range; we will try to grow device-quality material, deposited epitaxially using metalorganic chemical vapor deposition on sapphire substrates.
|
293 |
Deep-UV Light Emitting Diodes: An Experimental Investigation of Characterization and Optimization TechniquesFraser, Eric M. 01 May 2005 (has links)
Light emitting diodes (LEDs) and laser diodes (LDs) have many advantages over conventional light sources. Current commercial LEDs span the spectrum from IR to near- UV. There are a variety of applications for devices that extend into the deep-UV, including biological agent detection and optical storage. The nitride material system is a set of semiconducting compounds that have wavelengths that span a broad range, from yellow to deep-UV. AlGaN has a direct bandgap that extends into the deep-UV range; we will try to grow device-quality material, deposited epitaxially using metalorganic chemical vapor deposition on sapphire substrates.
|
294 |
Red EL Properties of OLED Having Hole Blocking LayerLEE, Duck-Chool, MIZUTANI, Teruyoshi, MORI, Tatsuo, KIM, Hyeong-Gweon 20 July 2000 (has links)
No description available.
|
295 |
Design and Fabrication of Light-Emitting Electrochemical Cells / Design och tillverkning av ljusemitterande elektrokemiska cellerSandström, Andreas January 2013 (has links)
Glödlampan, en gång symbolen för mänsklig uppfinningsförmåga, är idag på väg att försvinna. Lysdioder och lågenergilampor har istället tagit över då dessa har betydligt längre livstid och högre effektivitet. Den tidigare så hyllade glödlampan anses numera vara en miljöbov, och förbud och restriktioner mot den blir allt vanligare. Trots detta så är de nya alternativen bara att betrakta som provisoriska steg på vägen mot en ideal ljuskälla, som idag tyvärr inte existerar. Lågenergilampor innehåller exempelvis kvicksilver, och utgör därmed ett direkt hot mot en användares hälsa. Både lysdioder och lågenergilampor består även av höga halter av andra tungmetaller, och är väldigt komplicerade att tillverka. Återvinning är därför ett måste, och en fullödig energibesparingsanalys måste ta hänsyn till den betydande energin som går åt vid tillverkningen. Till viss del kan detta lösas genom att göra komponenterna små och ljusstarka, men för att göra en sådan belysning angenäm används istället utrymmeskrävande och ofta energislukande lampskärmar. Lysdioder och lågenergilampor är helt enkelt bra, men långt ifrån perfekta.All elektronisk utrustning är idag beroende av metaller och inorganiska halvledare, vilket gör återvinning viktig och tillverkning komplicerad. Detta är kanske på väg att ändras då även organiska material, t.ex. plast, har visat sig kunna ha elektroniska egenskaper. Idag är organisk elektronik ett hett forskningsområde där material med liknande egenskaper som plast, fast med funktionella elektroniska egenskaper, undersöks och appliceras. Något som gör organiska material extra intressanta är att många kan lösas upp i vätskor, vilket möjliggör för skapandet av bläck. Detta leder i sin tur till möjligheter för användandet av storskaliga trycktekniker, t.ex. tidningspressar och bläckstråleskrivare, vilka leder till en stor kostnadsreduktion och förenklad tillverkning av lysande komponenter. Idag har plast redan ersatt många andra material i en mängd olika tillämpningar. Plastflaskor är vanligare än glasflaskor, och ylletröjor konkurerar idag med kläder gjorda av fleece och andra syntetiska fibrer. Med ljusemitterande plast finns det helt klart en möjlighet att en liknande utveckling kan ske även för lampor.Den här avhandlingen fokuserar på den fortsatta utvecklingen av den ljusemitterande elektrokemiska cellen (LEC), som 1995 uppfanns av Pei et al. LEC-tekniken använder sig av organiska halvledare för att konvertera elektrisk ström till ljus, men även en elektrolyt som möjliggör elektrokemisk dopning. Detta förbättrar den organiska halvledarens elektroniska egenskaper signifikant, vilket leder till mindre resistans och högre effektivitet hos den färdiga lysande komponenten.Visionen för denna och besläktade tekniker har sedan länge varit förverkligandet av en lysande tapet. Den här avhandlingen har försökt närma sig denna vision genom att visa hur en LEC kan uppnå hög effektivitet och lång livslängd, och samtidigt tillverkas i luft med storskaliga produktionsmetoder. Orsaker till en tidigare begränsad livslängd har identifierats och minimerats med hjälp av nya komponentstrukturer och materialformuleringar. En inkapslingsmetod presenteras också, vilken skyddar komponenten från syre och vatten som annars lätt reagerar med det dopade organiska materialet. Detta resulterar i en signifikant förbättring av livslängden.Genom att använda slot-die bestrykning och sprayning, båda kompatibla med rulle-till-rulle tillverkning, har möjligheter för storskalig produktion demonstrerats. Slutligen har en speciell metod för spraymålning av stora lysande ytor utvecklats. / The incandescent light bulb, once the very symbol for human ingenuity, is now being replaced by the next generation of lighting technologies such as the compact fluorescent lamp (CFL) and the light emitting diode (LED). The higher efficiencies and longer operational lifetimes of these new sources of illumination have led to the demise of the classic traditional bulb. However, it should be pointed out that the light sources that are taking over are better, but not perfect. The complex high-voltage electronic circuits and health hazardous materials required for their operation make them far from a sustainable eco-friendly option. Their fabrication is also complex, making the final product expensive. A new path forward might be through the use of plastics or other organic materials. Though not traditionally seen as electronically active, some organic materials do behave like inorganic semiconductors and substantial conductivity can be achieved by doping. Since plastics can be easily molded into complex shapes, or made into an ink using a solvent, it is expected that organic materials could revolutionize how we fabricate electronic devices in the future, and possibly replace inorganic crystals in the same way as plastics have replaced glass and wool for food storage and clothes. This thesis has focused on the light-emitting electrochemical cell (LEC), which was invented by Pei et al. in 1995. It employs organic semiconductors that can convert electricity to light, but also an electrolyte that further enhances the electronic properties of the semiconductor by allowing it to be electrochemically doped. This allows light-emitting films to be driven by a low-voltage source at a high efficiency. Unfortunately, the electrolyte has been shown to facilitate rapid degradation of the device under operation, which has historically severely limited the operational lifetime. Realizing the predicted high efficiency has also proven difficult. The purpose of this thesis is to bridge the gap between the LEC and the CFL. This is done by demonstrating efficient devices and improved operational lifetimes. Possible degradation mechanisms are identified and minimized using novel device architectures and optimized active layer compositions. An encapsulation method is presented, and shown to increase the LEC stability significantly by protecting it from ambient oxygen and water. The thesis further focuses on up-scaled fabrication under ambient air conditions, proving that light-emitting devices are compatible with solution-based and cost-efficient printing. This is achieved by a roll-to-roll compatible slot-die coating and a novel spray-depositing technique that alleviates problems stemming from dust particles and phase separation. A practical ambient air fabrication and a subsequent operation of light-emitting electrochemical cells with high efficiency are thus shown possible.
|
296 |
In Quest of Printed Electrodes for Light-emitting Electrochemical Cells: A Comparative Study between Two Silver InksNahid, Masrur Morshed January 2012 (has links)
This thesis presents a comparative study between two silver nanoparticle inks that were deposited using a Drop-on-Demand (DoD) inkjet printer, aiming at finding a functional ink that can be used to print electrodes in Light-emitting Electrochemical Cells (LECs). To achieve this, a DoD inkjet printer was installed and an acquaintance with the printer was attained. Among the two inks, one was employed as received while the other was reformulated, and successful deposition of both the inks was observed. During the reformulation process, it was seen that the highly volatile tetrahydrofuran (THF) solvent can be used to improve the ink properties, in contrast to what is recommended. After that, the inks were deposited on UV-ozone treated glass substrates, sintered at an elevated temperature under ambient conditions, and their specific resistances and thicknesses were measured. Finally, the inks were used to print the anode in a structured sandwich-cell LEC. The performance comparison was conducted by observing the emitted light of the LECs. The results indicate that the reformulated ink performs better, probably due to the lower silver concentration that results in flatter surface, which in turn effectively alleviates shorts.
|
297 |
Electrical characterization and investigation of the piezoresistive effect of PEDOT:PSS thin filmsSchweizer, Thomas Martin 19 April 2005 (has links)
The field of organic electronics is recently emerging in modern electrical applications. Organic light emitting diodes have been developed and are implemented in commercially available products. The novel materials are also used in sensor applications, utilizing their intrinsic physical, chemical and electrical characteristics. Poly(3,4-ethylenedioxythiophene): poly(styrene-sulfonic acid) (PEDOT:PSS) is one of the most successful organic conductive materials. Developed as antistatic coating, it is now used in other fields as well such as in electro-optical devices as transparent electrodes. One of the reasons for its widely spread use is that water-based dispersions in high quality are available. In addition, it is considered highly stable, resisting degradation under typical ambient conditions. For this work, the usability of PEDOT:PSS as active layer for electromechanical sensor applications was investigated. The electrical properties of the material were characterized including temperature dependencies and environmental influences. A piezoresistive effect with negative sign was found. It is small in magnitude and of the same order as the change in resistance due to geometrical effects. The piezoresistive effect is temperature dependent and increasing in magnitude with higher temperatures. An average longitudinal piezoresistive coefficient pi_l of -5.6x10-10 Pa-1 at room temperature has been evaluated. The transverse effect under the same conditions is opposite in sign and two thirds in magnitude of the lateral effect. The hole mobility of PEDOT:PSS follows an Arrhenius function and thus the resistivity has a negative temperature coefficient. Some other thermally induced effects have been observed such as de-doping of the material resulting in an irreversibly lowered conductivity. Due to the low thermal conductivity of the substrate material used, Joule heating of the samples played an important role during the characterization and was utilized to investigate the temperature dependencies. The change of resistance caused by an applied stress to the sample is small, with a gage factor smaller than one.
|
298 |
The Design and Synthesis of Metal-Functionalized Poly(norbornenes) for Potential Use in Light-Emitting DiodesMeyers, Amy 23 December 2004 (has links)
The use of polymers in electro-optical devices, especially light-emitting diodes (OLEDs), has become very popular in recent years, due to their ease of processability. The major drawback of using polymers in these systems is their time-consuming synthesis when trying to improve upon their physical properties. For example, each time a new color or better conducting properties are desired, a new monomer must be synthesized. To circumvent these problems, the system described in this work is designed to connect the well-known chromophore aluminum tris(8-hydroxyquinoline) (Alq3) to a norbornene monomer unit, followed by polymerization using ring-opening metathesis polymerization (ROMP), thus allowing for the processability of a polymer while maintaining the fluorescent properties of the metalloquinolate.
The benefit of this system is that the monomers can be easily altered in order to tune color emission or to enhance the polymer properties. Some of the alterations include changing the metal center from aluminum to zinc in order to improve electron injection, adding substituents to the 8-hydroxyquinoline ligand in order to tune the emission color, and copolymerizing the Alq3-monomer with other norbornene monomers containing either a hole- or an electron-transport material side-chain to improve conductivity. These alterations lead to improved device performance and, more importantly, to a new method of designing polymeric systems for use in electronic devices.
|
299 |
Thermal Transport in III-V Semiconductors and DevicesChristensen, Adam Paul 31 July 2006 (has links)
It is the objective of this work to focus on heat dissipation in gallium nitride based solid-state logic devices as well as optoelectronic devices, a major technical challenge. With a direct band gap that is tunable through alloying between 0.7-3.8 eV, this material provides an enabling technology for power generation, telecommunications, power electronics, and advanced lighting sources. Previously, advances in these areas were limited by the availability of high quality material and growth methods, resulting in high dislocation densities and impurities. Within the last 40 years improvements in epitaxial growth methods such as lateral epitaxial overgrowth (LEO), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), and metal organic chemical vapor deposition (MOCVD), has enabled electron mobilities greater than 1600 cm2V/s, with dislocation densities less than 109/cm2. Increases in device performance with improved materials have now been associated with an increase in power dissipation (>1kW/cm2) that is limiting further development.
In the following work thermophysical material of III-V semiconducting thin films and associated substrates are presented. Numerical modeling coupled with optical (micro-IR imaging and micro-Raman Spectroscopy) methods was utilized in order to study the heat carrier motion and the temperature distribution in an operating device. Results from temperature mapping experiments led to an analysis for design of next generation advancements in electronics packaging.
|
300 |
Electroluminescence of Layer Thickness, Carbon Nano-particle Dopants, and Percolation Threshold Electric Conductivity of Fully Conjugated Rigid-rod PolymerChang, Chih-hao 02 July 2010 (has links)
Polymer light emitting diodes (PLED) were using a heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) as an opto-electronically active layer; and poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid) (PEDOT:PSS) as a hole transporting layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode, respectively. [6,6]-phenyl C61-butyric acid methyl ester (PC61BM) or derivatized multi-wall carbon nano-tube (MWCNT-C18), with great electron transporting ability, was doped into PBO to enhance the performance of PLED devices as well as the thin-film electrical conductivity.
The optical length was changed by using different spin coating speeds and durations. From the research, the £fmax of electroluminescence (EL) was blue-shifted as PEDOT:PSS spin coating speed increased for a thinner layer. Once using a higher spin coating speed repeatedly to coat PEDOT:PSS, the £fmax of electroluminescence was red-shifted. If the PEDOT:PSS film thicknesses were similar, the EL spectra were almost the same, independent of device processing scheme.
The injection current and EL intensity were enhanced by doping PC61BM or MWCNT- C18. The electric conductivity parallel to film surface (£m¡ü) was increased as the doping concentration increased. Because of the extremely different aspect ratio, the MWCNT-C18 had a lower percolation threshold concentration. Therefore, at a low MWCNT-C18 doping concentration, the injection current and the EL intensity were enhanced compared with those of PC61BM.
|
Page generated in 0.06 seconds