321 |
noneFang, Chun-chin 06 August 2009 (has links)
Recently, as a result of people around the world to actively encourage the creation of new businesses, so that the field of entrepreneurship research has become a field of study of foreign enterprises, the fastest growing part. In particular, Taiwan is now suffering because of the financial turmoil triggered by the economic recession crisis, global competition and rapidly changing industrial structure, but also to the urgent need to develop new industries to provide more employment opportunities.
And as a result of the rise of emerging markets, a substantial increase in demand for the material, particularly in the industrial development of the oil must be used is in great demand, resulting in global crude oil stocks continued to decline. In addition, the sharp increase in carbon dioxide emissions, causing global warming, the greenhouse effect serious environmental problems are also plaguing the world, it is "the United Nations Framework Convention on Climate Change's Kyoto Protocol," signed. Under the influence of many factors in the world are looking into the use of resources in alternative energy and energy-efficient power-saving environmental protection products, including solar industry and light-emitting diode (LED) industry the most popular, so many of the new company set up R & D and production of related products.
In this study, the production of LED Wafer and Chip professional manufacturer G company for the study, using SWOT Analysis, Five Forces analysis, expert interviews as research methods, analysis of LED current industry conditions and to explore the company's first business process and key success factors, and then find out the case, how can manufacturers in the highly competitive environment, the establishment of a unique business advantage to the follow-up for people wishing to enter the LED reference industrial companies.
The case study found that the G company success and have the following six key factors: (1) business and industry pre-market assessment of the right; (2) a clear position; (3) product differentiation (niche products); (4) has a strong start-up team; (5) personality traits entrepreneurs; (6) of prudent financial control, and the scholars referred to the key factors of success in good agreement, therefore, present or future intention to enter the LED after industry into the role of manufacturers with a reference indicator .
|
322 |
Fabrication of aspherical micro-lens using modified LIGA processLee, Wan-chi 26 August 2009 (has links)
This study utilizes a modified LIGA process to fabricate a high aspect ratio aspherical micro lens array, which improves low light output of OLED due to its intrinsic total internal reflection.
Presently typical OLED extraction efficiency is not high. How to increase OLED extraction efficiency is a valuable topic to discuss. This study analyzes related parameters that influence the formation of micro lenses, for example, the influence of variation of diametric dimension, dry etching parameters and electroforming rate. The experimental results indicate that the tolerance of dimensional variation of the diameter is about 5% during the thermal reflow and dry etching stage. The oxygen content and the photoresist surface during dry etching influence the result. A high electroforming rate is helpful for covering the surface defects on photoresist. An undercut caused by dry etching will discontinue the initial electroformed layers. A apherical microens array can raise the luminance to a maximum of 15 times higher.
|
323 |
The Reliability Study of Optical Power and Radiation Pattern for High-Power Light-Emitting Diodes Modules in Aging TestTsai, Chun-chin 08 December 2009 (has links)
Light-emitting diodes (LED) illumination takes considerable applications in nowadays daily lives due to the improvement on efficiency of the LED modules. The connections between the reliability and the lifetime, power efficiency, optical spectrum, and structure design of the LED modules are the major research topics.
In this study, high-power LED modules encapsulated with different lens shapes after a thermal-aging test were studied experimentally and numerically. The results showed that the LED modules encapsulated with a hemispherical-shaped plastic lens exhibited a better lifetime due to their better thermal dissipation than those with cylindrical- or elliptical-shaped plastic lenses. In the case of 80¢J aging test, the lifetime of hemispherical-shaped lens was 1.5 times better than the cylindrical- or elliptical-shaped lenses.
Decay of radiation pattern and optical spectrum of high-power LED modules fabricated by different manufacturers after a thermal-aging test were investigated experimentally and numerically. The results showed that the radiation pattern of the LED modules at the two view angles of ¡Ó (15o~75o) decreased more than the other angles as aging time increased. Due to the degradation of lens material after thermal aging, the center wavelength of the LED spectrum shifted 5 nm. Furthermore, the radius curvature of plastic lens was observed 6-70 £gm contraction as aging times increased. Both experimental and simulated results clearly indicated that improving the lens structure and lens material is essential to extend the operating life of the high-power LED modules.
High-power phosphor-converted white-light-emitting diodes (PC-LEDs) with selected concentration and thickness of Ce:YAG phosphor-doped silicones were investigated to study the thermal degradation effect of the Ce:YAG phosphor-silicone layer. The experimental results showed that the lumen loss, chromaticity (CIE shift), and spectrum intensity reduction increased as the concentration of Ce:YAG phosphor doped silicone increased. We showed that 94% lumen loss was attributed to 5.5 wt% Ce:YAG doping and only 6% of the lumen loss was due to a 1mm thickness of silicone degradation. From practical points of view, we found that a lower doping concentration of the Ce:YAG phosphor in thin silicone is a better choice in terms of having less thermal degradation for use in packaging of the high-power PC-LEDs modules and is essential to extend the operating lifetime of the phosphor-based white LED modules.
|
324 |
Green light emitting diodes and laser diodes grown by metalorganic chemical vapor depositionLochner, Zachary Meyer 07 April 2010 (has links)
This thesis describes the development of III-Nitride materials for light emitting applications. The goals of this research were to create and optimize a green light emitting diode (LED) and laser diode (LD). Metalorganic chemical vapor deposition (MOCVD) was the technique used to grow the epitaxial structures for these devices.
The active regions of III-Nitride based LEDs are composed of InₓGa₁₋ₓN, the bandgap of which can be tuned to attain the desired wavelength depending on the percent composition of Indium. An issue with this design is that the optimal growth temperature of InGaN is lower than that of GaN, making the growth temperature of the top p-layers critical to the device performance. Thus, an InGaN:Mg layer was used as the hole injection and p-contact layers for a green led, which can be grown at a lower temperature than GaN:Mg in order to maintain the integrity of the active region. However, the use of InGaN comes with its own set of drawbacks, specifically the formation of V-defects. Several methods were investigated to suppress these defects such as graded p-layers, short period supper lattices, and native GaN substrates. As a result, LEDs emitting at ~532 nm were realized.
The epitaxial structure for a III-Nitride LD is more complicated than that of an LED, and so it faces many of the same technical challenges and then some. Strain engineering and defect reduction were the primary focuses of optimization in this study. Superlattice based cladding layers, native GaN substrates, InGaN waveguides, and doping optimization were all utilized to lower the probability of defect formation. This thesis reports on the realization of a 454 nm LD, with higher wavelength devices to follow the same developmental path.
|
325 |
Oxide nanowire arrays for energy sciencesXu, Sheng 11 November 2010 (has links)
Oxide nanowire arrays are playing an important role in energy sciences nowadays, including energy harvesting, energy storage, and power management. By utilizing a wet chemical growth method, we demonstrated the capabilities of synthesizing density controlled vertical ZnO nanowire arrays on a general substrate, optimizing the aspect ratio of the vertical ZnO nanowire arrays guided by a statistical method, epitaxially growing patterned vertical ZnO nanowire arrays on inorganic substrates, epitaxially growing patterned horizontal ZnO nanowire arrays on non-polar ZnO substrates, and the lift-off of the horizontal ZnO nanowire arrays onto general flexible substrates. In addition, single crystalline PbZrxTi1-xO3 (PZT) nanowire arrays were epitaxially grown on conductive and nonconductive substrates by hydrothermal decomposition. Beyond that, based on the as-synthesized ZnO nanowire arrays, we demonstrated multilayered three dimensionally integrated direct current and alternating current nanogenerators. By integrating a ZnO nanowire based nanogenerator with a ZnO nanowire based nanosensor, we demonstrated solely ZnO nanowire based self-powered nanosystems. Also, utilizing a commercial full-wave bridge rectifier, we rectified the alternating output charges of the nanogenerator based on PZT nanowire arrays, and the rectified charges were stored into capacitors, which were later discharged to light up a laser diode (LD). In addition, blue/near-ultraviolet (UV) light emitting diodes (LED) composed of ordered ZnO nanowire arrays on p-GaN wafers were presented.
|
326 |
Phosphorescent cyclometalated iridium(III) complexes and corresponding conducting metallopolymersHesterberg, Travis Wayne 06 July 2012 (has links)
Conducting metallopolymers have been investigated for a variety of applications
due to their ability to take advantage of both the mechanical processability of the polymer
material, as well as the optical and electronic properties of the metal. Our project goal is
to design, synthesize and characterize novel iridium(III)-containing conducting
metallopolymers for use as the active layer in polymer light-emitting diodes. We have
utilized thiophene functionalized ligands that can be readily electropolymerized into
conducting polymer thin films and can be easily incorporated into a device structure.
Iridium(III) was chosen as the metal center due to its promising photophysical properties,
as similar complexes have demonstrated high luminescent quantum yields and short
phosphorescent lifetimes. The coordination environment around the metal can be altered
synthetically to tune the emission wavelength across the visible spectrum. The synthetic
control over the polymer backbone, as well as the iridium(III) ligand environment,
allowed us to independently vary each component, which has provided a variety of
materials. The materials are characterized through 1H and 13C NMR, mass spectrometry,
elemental analysis, electrochemistry, X-Ray diffraction and X-Ray Photoelectron
Spectroscopy. The photophysical properties of the materials are studied through UVvii
Visible absorption spectroscopy, UV-Vis-NIR spectroelectrochemistry and steadystate/
time-resolved emission spectroscopy. / text
|
327 |
Morphological effects of organic and inorganic semiconducting materials by scanning probe microscopyGlaz, Micah Sivan 01 February 2013 (has links)
Solution deposition of thin film photovoltaic materials leads to large variations in the morphological and chemical compositions of the film. In order to improve device functionality, it is important to understand how morphology and chemical composition affects charge generation, separation, and collection. This PhD work will first study bulk methods in order to characterize materials in solution and films. The results are then correlated with microscopy studies examining morphology. Other methods used in this PhD work will directly couple spectra and microscopy. Microscopic regions of such films and devices can be illuminated using scanning confocal microscopy or near-field scanning optical microscopy (NSOM), which allows for one to directly probe regions of the film at or below the optical diffraction limit. By scanning the sample over a fixed laser spot we can simultaneously create image maps of the topographical, electrical and optical properties. This technique, known as laser beam induced current (LBIC) allows one to directly probe a local area of a device with 100-300nm resolution. Along with bulk device efficiency studies, near field and confocal data of inorganic and organic materials are investigated. These include devices fabricated with a blend of P3HT (poly[3-hexylthiophene]) and perylene diimide derivatives, and Cu(InxGa1-x)Se2 [CIGS] nanoparticle devices. Finally, we use a new device architecture, a lateral organic photovoltaic (LOPV) in order to spatially resolve transport in functional organic devices. / text
|
328 |
Wide band-gap nanostructure based devicesChen, Xinyi, 陈辛夷 January 2012 (has links)
Wide band gap based nanostructures have being attracting much research interest because of their promise for application in optoelectronic devices. Among those wide band gap semiconductors, gallium nitride (GaN) and zinc oxide (ZnO) are the most commonly studied and optoelectronic devices based on GaN and ZnO have been widely investigated. This thesis concentrates on the growth, optical and electrical properties of GaN and ZnO nanostructures, plus their application in solar cells and light emitting diodes (LEDs).
GaN-nanowire based dye sensitized solar cells were studied. Different post-growth treatments such as annealing and coating with a TiOx shell were applied to enhance dye absorption. It was found that TiOx increased the dye absorption and the performance of the dye sensitized solar cell.
ZnO nanorods were synthesized by vapor deposition and electrodeposition. Post-growth treatments such as annealing and hydrothermal processing were used to modify the defect chemistry and optical properties. LEDs based on GaN/ZnO heterojunctions were studied. The influence of ZnO seed layers on GaN/ZnO LEDs was investigated. GaN/ZnO LEDs based on ZnO nanorods with MgO and TiOx shells were also prepared in order to modify the LED performance. The coating condition of the shell was found to influence the current-voltage (I-V) characteristics and device performance. Moreover, high brightness LEDs based on GaN with InGaN multiple quantum wells were also fabricated.
The origin of the emission from GaN/ZnO LEDs was studied using different kinds of GaN substrates. Direct metal contacts on bare GaN substrates were also employed to investigate the optical emission and electrical properties. It is found that the emission from the GaN/ZnO LEDs probably originated from the GaN substrate.
GaN/ZnO LEDs with MgO as an interlayer were also fabricated. The MgO layer was expected to modify the band alignment between the GaN and the ZnO. It was shown that GaN/MgO/ZnO heterojunctions (using both ZnO nanorods and ZnO films) have quite different emission performance under forward bias compared to those that have no MgO interlayer. An emission peak was around 400 nm could originate from ZnO.
Nitrogen doped ZnO nanorods on n-type GaN have been prepared by
electrodeposition. Zinc nitrate and zinc acetate were used as ZnO precursors and NH4NO3 was used as a nitrogen precursor. Only the ZnO nanorods made using zinc nitrate showed obvious evidence of doping and coherent I-V characteristics. Cerium doped ZnO based LEDs were fabricated and showed an emission that depended on the cerium precursor that was employed. This indicates that the choice of precursor influences the growth, the materials properties and the optical properties of ZnO. / published_or_final_version / Physics / Doctoral / Doctor of Philosophy
|
329 |
Synthesis and charaterisation of phosphorescent copper (I) complexes for light emitting devicesAndrés-Tomé, María Inmaculada January 2013 (has links)
Over the last decade, many significant developments have been made to improve the active materials in a new generation of organic light emitting devices (OLEDs). Current OLED technology is focused on organo-transition metal complexes, which emit from the triplet excited state and exhibit bright phosphorescence. Efficient in devices have been reported using these luminescent materials, such as iridium and platinum complexes, however, rare metal abundance concerns, high price and toxicology have inspired the study of alternative phosphorescent materials, such as copper or silver complexes. In this research, novel copper complexes have been synthesized, such as trinuclear and mononuclear copper (I) complexes, using a range of ligands, such as alkynyl, phosphine alkynyl and pyridine ligands. The synthesised complexes have been characterised by with a range of techniques, such as UV/Vis absorption and emission spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), cyclic voltammetry (CV) and scanning electron microscopy (SEM). Most of the copper complexes have shown very interesting luminescent properties in solution and solid state and some of them were studied for future application in a device.
|
330 |
Multicolor colloidal quantum dot based inorganic light emitting diode on silicon : design, fabrication and biomedical applicationsGopal, Ashwini 07 February 2011 (has links)
Controlled patterning of light emitting diodes on semiconductors enables a vast variety of applications such as structured illumination, large-area flexible displays, integrated optoelectronic systems and micro-total analysis systems for real time biomedical screening. We have demonstrated a series of techniques of creating quantum-based (QD) patterned inorganic light emitting devices at room temperature on silicon (Si) substrate. In particular:
(I) A combination of QDs self-assembly and microcontact printing techniques were developed to form the light emission monolayer. We expand the self-assembly method with the traditional Langmuir-Schaeffer technique to rapidly deposit monolayers of core: shell quantum dots on flat substrates. A uniform film of QDs self-assembled on water was transferred using hydrophobic polydimethylsiloxane stamps with various nano/micro-scale patterns, and was subsequently stamped. A metal oxide electron transport layer was co-sputtered onto the QDs. The structure was completed by an e-beam evaporating thin metal cathode. Multicolor light emission was observed on application of voltage across the device.
(II) We also demonstrate the photolithographic patterning capability of a metal cathode for top emitting QDLEDs on Si substrates. Lithographic patterning technique enables site-controlled patterning and controlled feature size of the electrode with greater accuracy. The stability of inorganic silicon materials and metal oxide based diode structure offers excellent advantages to the device, with no significant damage observed during the patterning and etching steps. Efficient electrical excitation of QDs was demonstrated by both the methods described above.
The technique was translated to create localized QD-based light sources for two applications: (1) Three-dimensional scanning probe tip structures for near field imaging. Combined topographic and optical images were acquired using this new class of “self-illuminating” probe in commercial NSOM. The emission wavelength can be tuned through quantum-size effect of QDs. (2) Multispectral excitation sources integrated with microfluidic channels for tumor cell analyses. We were able to detect the variation of sub-cellular features, such as the nucleus-to-cytoplasm ratio, to quantify the absorption at different wavelength upon the near-field illumination of individual tumor cells towards the determination of cancer developmental stage. / text
|
Page generated in 0.0803 seconds