391 |
Evaluation and characterization of efficient organic optoelectronic materials and devicesHo, Ka Wai 18 August 2020 (has links)
With the progression towards lighter but larger-display self-sustainable mobile devices, device efficiency becomes increasingly important, owing to the higher power display consumption but at the same time more limitation on the size and volume of energy storage. In this thesis, selected aspects regarding to efficiency of three types of optoelectronic devices, indoor photovoltaics (IPVs), perovskite thin-film transistors (TFTs) and organic light-emitting diodes (OLEDs) have been investigated. IPVs can make off-grid devices self-sustainable by harvesting ambient light energy. Its weak irradiance necessitates high-efficiency IPVs to generate sufficient power. Our work addresses the need of knowing the limit of the device parameters for correct evaluation and understanding the efficiency loss for developing clinical tactics. We delivered a general scheme for evaluating the limiting efficiency and the corresponding device parameters of IPVs under various lights, illuminance and material bandgap. In contrast to the AM1.5G conditions, a maximum power conversion efficiency (PCE) of 51-57 % can be achieved under the optimal bandgap of 1.82-1.96 eV. We also propose using the second thickness peak of interference instead of the first as a better optimal absorber thickness after identifying the finite absorption as the major source of efficiency loss. The work provides insights for device evaluation and material design for efficient IPV devices. The novel hybrid organic-inorganic perovskites have gained enormous research interest for its various excellent optoelectronic properties such as high mobility. TFT as an alternative application to the majorly focused photovoltaics is realized in this work. There are few reports on perovskite TFTs due to wetting issues. By employing polymethacrylates with ester groups and aromatic substituents which provide polar and cation-π interactions with the Pb2+ ions, quality films could be fabricated with large crystals and high electron mobility in TFTs. We further improved the performance by resolving interfacial mixing between the perovskite and the polymer using the crosslinkable SU-8, achieving the highest mobility of 1.05 cm2 V−1 s−1. Subsequently, we cured the grain boundaries using methylamine solvent vapor annealing, suppressing the TFT subthreshold swing. The work provides a map for the improvement of perovskite TFTs. It has been revealed that molecular orientations of the emitters in OLEDs with the transition dipole moment lying in plane enhances light outcoupling efficiency. Multiple experimental techniques are needed to provide complementary orientation information and their physical origin. Here, we propose using TFT to probe the orientation of the phosphorescent emitters. Homoleptic fac-Ir(ppy)3 and heteroleptic trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) were deposited on polystyrene (PS) and SiO2 substrates. Compared to the PS surface inducing isotropic orientation as the control, trans-Ir(ppy)2(acac) and trans-Ir(ppy)2(tmd) possessed decreased carrier mobilities on SiO2. With the study of initial film growth, we infer that preferred orientation induced by the polar SiO2 surface led to an increase in energetic disorder in the well-stacked trans-Ir(ppy)2(acac) and hopping distance in the amorphous trans-Ir(ppy)2(tmd). The highly symmetric fac-Ir(ppy)3 remained its isotropic orientation despite the dipolar interaction. Surprisingly, the TFT technique gives much higher sensitivity to surface-induced orientation, and thus may potentially serve as a unique electrical probe for molecular orientation.
|
392 |
Fabrication and Characterization of Micro-membrane GaN Light Emitting DiodesLiao, Hsien-Yu 05 1900 (has links)
Developing etching of GaN material system is the key to device fabrications. In this thesis, we report on the fabrication of high throughput lift-off of InGaN/GaN based micro-membrane light emitting diode (LED) from sapphire substrate using UV-assisted photoelectroless chemical (PEsC) etching. Unlike existing bandgap selective etching based on unconventional sacrificial layer, the current hydrofluoric acid based wet etching process enables the selective etching of undoped GaN layer already incorporated in standard commercial LED structures, thus attaining the leverage on high performance device design, and facile wet process technology. The lift-off micro-membrane LED showed 16% alleviated quantum efficiency droop under 200 mA/cm2 current injection, demonstrating the advantage of LED epitaxy exfoliation from the lattice-mismatched sapphire substrate. The origin of the performance improvement was investigated based on non-destructive characterization methods. Photoluminescence (PL) characterization showed a 7nm peak emission wavelength shift in the micro-membrane LED compared to the GaN-on-Sapphire LED. The Raman spectroscopy measurements correlate well with the PL observation that a 0.86 GPa relaxed compressive biaxial strain was achieved after the lift-off process. The micro-membrane LED technology enables further heterogeneous integration for forming pixelated red, green, blue (RGB) display on flexible and transparent substrate. The development of discrete and membrane LEDs using nano-fiber paper as the current spreading layer was also explored for such integration.
|
393 |
Fundamental Properties of Functional Zinc Oxide Nanowires Obtained by Electrochemical Method and Their Device ApplicationsNadarajah, Athavan 01 January 2012 (has links)
We report on the fundamental properties and device applications of semiconductor nanoparticles. ZnO nanowires and CdSe quantum dots were used, prepared, characterized, and assembled into novel light-emitting diodes and solar cells. ZnO nanowire films were grown electrochemically using aqueous soluble chloride-based electrolytes as precursors at temperatures below 90° C. Dopants were added to the electrolyte in the form of chloride compounds, which are AlCl3, CoCl2, CuCl2, and MnCl2. The optical, magnetic, and structural properties of undoped and transition-metal-ion doped ZnO nanowires were explored. Our results indicate that the as-grown nanowire structures have considerable internal strain, resulting in clearly visible lattice distortions in bright and dark-field transmission electron micrographs. Photo and electroluminescence studies indicate that the strain-induced defects strongly dominate any dopant-related effects. However, annealing at moderate temperature as well as laser annealing induces strain relaxation and leads to dopant activation. Hence, the optical and electrical properties of the nanowires significantly improve, allowing these nanowires to become feasible for use in the fabrication of solar cell and LED devices. In addition, the magnetic impurities incorporated into our ZnO nanowires show superparamagnetic behavior at room-temperature, while Al-doped and undoped ZnO nanowires show no magnetic behavior. The electroluminescence (EL) is achieved from a vertical hybrid p-n junction LED arrangement consisting of a hole-conducting polymer and n-type ZnO nanowires, our group was the first to report this vertical nanowire-based LED in Könenkamp et al., 2004 [12]. The observed EL spectra show an ultraviolet excitonic emission peak and a broad defect-related emission band in the visible range. After annealing at 380° C, the defect related EL peak exhibits a characteristic shift to higher wavelengths, where the magnitude of the shift is dependent on the dopant type. Aluminum incorporation exhibited the most improved exciton related-emission, leading to the emergence of a narrow excitonic luminescence peak around 390 nm, which is close to the bandgap of ZnO. The comparison of spectra obtained from temperature-dependent photoluminescence (PL) measurements, before and after thermal annealing, also indicates that the optical activity of impurities changes noticeably upon annealing. The internal quantum efficiency for PL is measured to be as high as 16 percent for Al-doped samples annealed at 380° C. The PL measurements also show that the excitonic luminescence is preferentially guided, while the defect related emission is more isotropically emitted. The nanostructured heterojunction solar cell is designed such that thin CdSe quantum dot films are embedded between a ZnO nanowire film and a hole-conducting polymer layer. This arrangement allows for enhanced light absorption and an efficient collection of photogenerated carriers. Here, we present a detailed analysis of the pyridine solution and 1,2- ethanedithiol ligand exchange processes of the quantum dots, deposition processes of this quantum dot layer, the conformality of this layer on deeply nanostructured samples, and the effect of a surfactant-aided thermal annealing process. Annealing creates a structural conversion of the quantum dot layers into an extremely thin continuous poly-crystalline film, with typical grain diameters of 30-50 nm. This transition is accompanied by a loss of quantum confinement and a significant improvement of the charge transport in the CdSe layer. The combination of the solution and ligand exchange of CdSe quantum dots, as well as the deposition and optimized annealing processes of this quantum dot layer, resulted in solar cells with an open-circuit voltage up to 0.6 V, a short circuit current of ~15 mA/cm2, an external quantum efficiency of 70 percent, and an energy conversion efficiency of 3.4 percent. This 3.4 percent efficiency is presently one of the best efficiencies obtained for this type of device.
|
394 |
Three-dimensional coupled-wave theory for photonic-crystal surface-emitting lasers / フォトニック結晶面発光レーザの3次元結合波理論の構築Liang, Yong 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18283号 / 工博第3875号 / 新制||工||1594(附属図書館) / 31141 / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 野田 進, 教授 川上 養一, 教授 藤田 静雄 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
395 |
Theoretical Design of Light-Emitting Molecules Based on Vibronic Coupling Density Analysis / 振電相互作用密度を用いた発光分子の理論設計Uejima, Motoyuki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18288号 / 工博第3880号 / 新制||工||1595(附属図書館) / 31146 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 田中 一義, 教授 田中 庸裕, 教授 佐藤 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
396 |
Vibronic Coupling Density as a Chemical Reactivity Index and Other Aspects / 反応性指標としての振電相互作用密度及びその他の諸相Haruta, Naoki 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19741号 / 工博第4196号 / 新制||工||1647(附属図書館) / 32777 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 田中 庸裕, 教授 佐藤 啓文, 教授 梶 弘典 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
397 |
Synthesis of Optical Materials Based on Element-Blocks and Their Properties / 元素ブロックを基盤とした光学材料の合成とその特性Yeo, Hyeonuk 23 March 2017 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(工学) / 乙第13098号 / 論工博第4159号 / 新制||工||1677(附属図書館) / (主査)教授 中條 善樹, 教授 秋吉 一成, 教授 古賀 毅 / 学位規則第4条第2項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
398 |
Introducing Functionality to Poly(arylene ether)s via Modification of Diphenyl sulfone – type MonomersHumayun, Zahida 04 June 2020 (has links)
No description available.
|
399 |
Fabrications and optical properties of loss-reduced silicon metasurfaces for luminescence enhancement / 発光増強のための損失低減シリコンメタサーフェスの作製と光学特性LIU, LIBEI 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24626号 / 工博第5132号 / 新制||工||1981(附属図書館) / 京都大学大学院工学研究科材料化学専攻 / (主査)教授 田中 勝久, 教授 三浦 清貴, 教授 藤田 晃司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
400 |
Exciton Dynamics in White Organic Light-Emitting Diodes comprising Triplet HarvestingHofmann, Simone 01 July 2013 (has links)
This work comprises different approaches for the efficiency enhancement of white organic light-emitting diodes (OLEDs). In particular, diffusion and transfer processes of excited singlet and triplet states are investigated. Generation of white light is realized by using the so-called triplet harvesting method where the otherwise nonradiatively decaying triplets of a blue fluorescent emitter are transferred to a highly efficient phosphorescent emitter and result in additional emission at lower energies. Triplet harvesting significantly increases the internal quantum efficiency in OLEDs. First, the well-known blue emitter 4P-NPD is investigated as model case. Using time-resolved spectroscopy, triplet harvesting by a yellow and red phosphorescent emitter, respectively is directly proven. However, triplet harvesting by a green emitter is not possible due to the low triplet energy of 4P-NPD. Using quantum chemical calculations, two new emitter molecules, 8M-4P-NPD and 8M-4P-FPD, are synthesized with the aim to rise the triplet energy. Their properties and their ability to facilitate triplet harvesting by a green emitter are studied. For the first time, a white triplet harvesting OLED is demonstrated where triplet harvesting occurs directly from a blue emitter to a green and a red emitter.
Furthermore, an additional singlet transfer is observed in the triplet harvesting OLEDs under investigation. Using the phosphorescent emitter as singlet sensor, this effect allows the determination of the singlet diffusion length in 4P-NPD. By varying the distance between singlet generation zone and singlet sensor, a singlet diffusion length of 4.6 nm is found. One further approach to increase the efficiency is the optimization of a tandem OLED which comprises two single OLED units stacked on top of each other. At a luminance of 1,000 cd/m², the white tandem OLED shows an external quantum efficiency of 25%, a luminous efficacy of 33 lm/W, a color rendering index (CRI) of 62, and Commission Internationale de l’Eclairage (CIE) color coordinates of (0.53/0.43). These efficiencies are comparable to state-of-the-art efficiencies of white OLEDs.
Finally, the highly efficient white tandem structure is applied on an alternative electrode consisting of flattened silver nanowires. In comparison to the conventional OLED with indium-tin oxide (ITO) electrode, this OLED shows similarly high efficiencies as well as a superior color stability in terms of viewing angles. The color stability can be assigned to the light scattering properties of the nanowires. The OLED with silver nanowire electrode shows efficiencies of 24% and 30 lm/W at 1,000 cd/m² with a CRI of 69 and CIE coordinates of (0.49/0.47).:List of Publications
List of Important Abbreviations
1 Introduction
2 White Light and Color
2.1 Radiometry and Photometry
2.2 Color Stimulus Specification
2.3 White Light
2.4 Light Sources
3 Organic Semiconductors
3.1 Molecular Orbitals
3.2 Fluorescence and Phosphorescence
3.3 Singlet-Triplet Splitting
3.4 Energy Transfer Mechanisms
3.5 Exciton Diffusion and Quenching
3.6 Charge Carrier Transport
4 Organic Light-Emitting Diodes
4.1 Electroluminescence
4.2 The pin Concept
4.3 Phosphorescent Emitters
4.4 Triplet Harvesting
4.5 Light Outcoupling
4.6 White OLEDs - State-of-the-Art
5 Experimental and Methods
5.1 Materials
5.2 Device Preparation
5.3 OLED Characterization
5.3.1 IVL and Spectral Emission
5.3.2 Angular Dependence
5.3.3 Efficiencies
5.3.4 Lifetime
5.4 Time-Resolved Spectroscopy
5.5 Photoluminescence Setup
5.6 Theoretical Calculations
5.6.1 Optical Simulation of OLEDs
5.6.2 Calculation of Molecular Orbitals
6 Triplet Harvesting
6.1 The Emitter 4P-NPD
6.1.1 Orientation
6.1.2 Exciton Harvesting
6.1.3 Two-color white TH OLED
6.2 Development of Blue Emitters
6.2.1 8M-4P-NPD
6.2.2 8M-4P-FPD
6.3 Comparison to Quantum Chemical Calculations
6.4 Summary and Outlook
7 Singlet Diffusion Length
7.1 Electroluminescence Quenching
7.1.1 Working principle of the device
7.1.2 Theoretical Considerations
7.1.3 Results
7.2 Photoluminescence Quenching
7.2.1 Preliminary Considerations
7.2.2 Reference Devices
7.2.3 Sample Devices and Discussion
7.3 Summary and Outlook
8 Tandem OLEDs
8.1 Previous Work
8.2 Triplet Harvesting Unit
8.3 Full Phosphorescent Unit
8.4 Charge Generation Layer in Tandem OLEDs
8.5 Tandem OLED with Double Emission Layer
8.6 Conclusions and Outlook
9 Silver Nanowire Electrodes
9.1 Demand for Alternative Electrodes
9.2 Processing and Quality Characteristics
9.3 Influence of Organic Buffer Layers
9.4 Variation of the Electron Transport Layer Thickness
9.5 Highly Efficient OLEDs on Silver Nanowire Electrodes
9.6 Summary and Outlook
10 Concluding Remarks
10.1 Summary of Main Results
10.2 Outlook: White TH OLEDs / In dieser Arbeit werden verschiedene Ansätze zur Effizienzsteigerung in weißen organischen lichtemittierenden Dioden (OLEDs) erforscht. Hierfür werden im Besonderen Diffusions- und Transferprozesse von angeregten Singulett- und Triplettzuständen untersucht. Zur Erzeugung von weißem Licht wird die sogenannte “triplet harvesting” Methode verwendet, bei der die sonst nicht zur Emission beitragenden Triplettzustände eines fluoreszenten blauen Emitters auf einen hocheffizienten phosphoreszenten Emitter übertragen werden. Dieser liefert dann zusätzliche Emission im niederenergetischen Spektralbereich. Durch triplet harvesting kann die interne Quantenausbeute in OLEDs beträchtlich gesteigert werden. Zunächst wird der bekannte blaue Emitter 4P-NPD als Modellbeispiel untersucht. Mittels zeitlich aufgelöster Spektroskopie kann triplet harvesting auf einen gelben bzw. roten Emitter direkt nachgewiesen werden. Allerdings ist auf Grund der niedrigen Triplettenergie triplet harvesting auf einen grünen Emitter nicht möglich. In Anbetracht dieser Tatsache werden unter Zuhilfenahme quantenchemischer Betrachtungen zwei neue Emittermoleküle, 8M-4P-NPD und 8M-4P-FPD, synthetisiert und auf ihre Eigenschaften und ihre Eignung für triplet harvesting untersucht.
Dabei wird zum ersten Mal eine weiße OLED realisiert, in der triplet harvesting von einem blauen Emitter direkt auf einen grünen und einen roten Emitter erfolgt. Des Weiteren wird bei den untersuchten triplet harvesting OLEDs ein zusätzlicher Singulettübertrag auf den phosphoreszenten Emitter beobachtet. Dieser Effekt wird zur Bestimmung der Singulettdiffusionslänge in 4P-NPD genutzt. Der phosphoreszente Emitter dient dabei als Singulettsensor. Über eine Variation des Abstands zwischen Singulettgenerationszone und Sensor wird eine Singulettdiffusionslänge von 4,6 nm bestimmt. Ein weiterer Ansatz zur Effizienzsteigerung besteht in der Optimierung einer aus zwei OLEDs zusammengesetzten Tandem OLED. Bei einer Leuchtdichte von 1000 cd/m² erzielt diese weiße Tandem OLED eine externe Quanteneffizienz von 25% und eine Leistungseffizienz von 33 lm/W mit einem Farbwiedergabeindex (CRI) von 62 und Commission Internationale de l’Eclairage (CIE) Farbkoordinaten von (0,53/0,43). Diese Effizienzen sind vergleichbar mit dem aktuellen Forschungsstand weißer OLEDs.
Schließlich wird diese hocheffiziente weiße Tandemstruktur auf eine alternative Elektrode bestehend aus flachgedrückten Silbernanodrähten aufgebracht. Im Vergleich zur konventionellen OLED mit Indiumzinnoxid (ITO) Elektrode erreicht diese ähnlich hohe Effizienzen sowie eine verbesserte Farbstabilität bezüglich des Betrachtungswinkels, was auf die Streueigenschaften der Nanodrähte zurückgeführt werden kann. Bei einer Leuchtdichte von 1000 cd/m² zeigt die OLED mit Silbernanodrahtelektrode Effizienzen von 24% und 30 lm/W bei einem CRI von 69 und CIE Koordinaten von (0,49/0,47).:List of Publications
List of Important Abbreviations
1 Introduction
2 White Light and Color
2.1 Radiometry and Photometry
2.2 Color Stimulus Specification
2.3 White Light
2.4 Light Sources
3 Organic Semiconductors
3.1 Molecular Orbitals
3.2 Fluorescence and Phosphorescence
3.3 Singlet-Triplet Splitting
3.4 Energy Transfer Mechanisms
3.5 Exciton Diffusion and Quenching
3.6 Charge Carrier Transport
4 Organic Light-Emitting Diodes
4.1 Electroluminescence
4.2 The pin Concept
4.3 Phosphorescent Emitters
4.4 Triplet Harvesting
4.5 Light Outcoupling
4.6 White OLEDs - State-of-the-Art
5 Experimental and Methods
5.1 Materials
5.2 Device Preparation
5.3 OLED Characterization
5.3.1 IVL and Spectral Emission
5.3.2 Angular Dependence
5.3.3 Efficiencies
5.3.4 Lifetime
5.4 Time-Resolved Spectroscopy
5.5 Photoluminescence Setup
5.6 Theoretical Calculations
5.6.1 Optical Simulation of OLEDs
5.6.2 Calculation of Molecular Orbitals
6 Triplet Harvesting
6.1 The Emitter 4P-NPD
6.1.1 Orientation
6.1.2 Exciton Harvesting
6.1.3 Two-color white TH OLED
6.2 Development of Blue Emitters
6.2.1 8M-4P-NPD
6.2.2 8M-4P-FPD
6.3 Comparison to Quantum Chemical Calculations
6.4 Summary and Outlook
7 Singlet Diffusion Length
7.1 Electroluminescence Quenching
7.1.1 Working principle of the device
7.1.2 Theoretical Considerations
7.1.3 Results
7.2 Photoluminescence Quenching
7.2.1 Preliminary Considerations
7.2.2 Reference Devices
7.2.3 Sample Devices and Discussion
7.3 Summary and Outlook
8 Tandem OLEDs
8.1 Previous Work
8.2 Triplet Harvesting Unit
8.3 Full Phosphorescent Unit
8.4 Charge Generation Layer in Tandem OLEDs
8.5 Tandem OLED with Double Emission Layer
8.6 Conclusions and Outlook
9 Silver Nanowire Electrodes
9.1 Demand for Alternative Electrodes
9.2 Processing and Quality Characteristics
9.3 Influence of Organic Buffer Layers
9.4 Variation of the Electron Transport Layer Thickness
9.5 Highly Efficient OLEDs on Silver Nanowire Electrodes
9.6 Summary and Outlook
10 Concluding Remarks
10.1 Summary of Main Results
10.2 Outlook: White TH OLEDs
|
Page generated in 0.1245 seconds