• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 9
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Apport de la pression sur les performances d'une cellule d'électrolyse de la vapeur d'eau à haute température / Contribution of pressure on performances of high temperature steam electrolysis cell

Cacciuttolo, Quentin 04 December 2014 (has links)
L'électrolyse de l'eau à haute température permet de produire de l'hydrogène et de l'oxygène à partir d'eau, d'électricité et de chaleur grâce à une cellule électrochimique en céramique. Le travail sous pression est étudié afin d'éviter une étape de pressurisation du gaz nécessaire au stockage de celui-ci. Un autoclave fonctionnant jusqu'à 850 °C et 30 bar a été conçu et deux modèles de demi-cellule représentant respectivement l'électrode à hydrogène et l'électrode à oxygène ont été développés pour cette étude.Le modèle a montré que la pression aide l'approvisionnement en vapeur d'eau jusqu'aux sites réactionnels. Les taux de conversion de la vapeur en hydrogène atteignent plus de 95 % à partir de 5 bar.Le modèle du côté oxygène montre un effet thermodynamique négatif de la pression qui est prédit par l'équation de Nernst. Il permet d'étudier les surpressions à l'intérieur de l'électrode et donc le risque de délamination de l'électrode. Le travail sous pression permet de réduire ce risque en diminuant de 96 % les surpressions entre 1 et 30 bar.Le banc a permis d'étudier expérimentalement l'électrode à oxygène grâce à un montage à trois électrodes. Ses performances sont améliorées avec la pression, ce qui permet de compenser l'effet thermodynamique négatif. Les gains de performance s'expliquent par l'effet mécanique de la pression, permettant d'améliorer les contacts au sein de l'électrode mais aussi par une amélioration de la circulation de gaz et une amélioration de la cinétique des réactions d'adsorption/désorption à la surface de l'électrode. / In order to improve the industrial attractiveness of high temperature steam electrolysis (HTSE), the increase in the operating pressure is one of the most promising solutions. In this context, this study is dedicated to the analysis of the pressure influence on the electrochemical reactions occurring in HTSE. A Model and experimental results dealing with the effect of pressure increase have been carried out. Concerning the cathodic side model, the limiting current density due to the lack of steam is shifted towards higher steam conversion rates by increasing the operating pressure. Regarding the anodic side, a negative thermodynamic effect is predicted by Nernst equation but no negative effect appears at high current density. Furthermore, the overpressure at the oxygen electrode decreases with the operating pressure (and so the risk of delamination is reduced). At the same time, experimental studies on three electrodes cell until 30 bars have been lead on the oxygen electrode. A positive effect of the pressure on the oxygen side performances has been observed. This gain in performance could be explained by three different mechanisms. The mechanic effect of pressure increase contact inside the electrode. Furthermore, high pressure improves gas circulation and adsorption/desorption kinetics at the surface of electrode.
2

Étude d'un système autonome de production d'énergie couplant un champ photovoltaïque, un électrolyseur et une pile à combustible : réalisation d'un banc d'essai et modélisation

Busquet, Séverine 15 December 2003 (has links) (PDF)
Notre avenir énergétique doit être basé sur des énergies non polluantes ayant des ressources importantes. Les énergies renouvelables sont les meilleurs candidats mais l'intermittence de leur production nécessite de trouver des moyens de stockage efficaces et respectant l'environnement. Un système électrolyseur/pile à combustible permet de stocker l'électricité par l'intermédiaire d'un stockage sous forme de gaz et, en plus, de générer de la chaleur. L'objectif de ce travail est d'évaluer les performances d'un système autonome de production d'énergie électrique et thermique, couplant un champ photovoltaïque et un système de stockage par l'hydrogène, composé d'un électrolyseur, d'une unité de stockage de gaz et d'une pile à combustible. L'hydrogène est l'unique moyen de stockage de l'électricité. Pour réaliser cette étude, deux outils complémentaires ont été développés : un banc d'essai de 3,6 kW et un outil de simulation.<br/> Pour sélectionner le banc d'essai, une étude bibliographique rassemble les informations nécessaires au dimensionnement et au choix du système et de ses composants. La disponibilité très limitée de composants adaptés à notre application nous a contraints à développer de nouveaux appareils (électrolyseur, pile à combustible, appareil de conversion et de gestion d'énergie). Le banc d'essai réalisé est automatisé et sécurisé. L'analyse expérimentale évalue le rendement du système de stockage par l'hydrogène par la détermination des différentes pertes dans chacun des composants. Différentes modifications sont proposées pour améliorer les performances du système de stockage. L'outil de modélisation simule le fonctionnement du banc d'essai pour une charge et un site donnés. Il peut modéliser tout système à partir de résultats expérimentaux des composants. Les résultats de simulation permettent de caractériser le fonctionnement du système dans une application autonome, de déterminer ses performances et d'évaluer l'influence des différentes pertes.
3

L'Hydrogène électrolytique comme moyen de stockage d'électricité pour systèmes photovoltaïques isolés

Labbé, Julien 21 December 2006 (has links) (PDF)
Un système électrique isolé du réseau, uniquement alimenté par un générateur photovoltaïque nécessite un stockage d'énergie pour être autonome. La batterie au plomb est couramment utilisée à cet effet, en raison de son faible coût, malgré certaines contraintes de fonctionnement. On peut la remplacer par une unité de stockage (USEH) incluant un électrolyseur, une pile à combustible et un réservoir d'hydrogène. Mais il reste d'importants efforts à fournir avant de voir l'essor industriel de cette technologie dont les débouchés doivent être identifiés. Les applications stationnaires de quelques kW sont évaluées par simulation numérique. Un simulateur est développé dans l'environnement Matlab/Simulink, comprenant principalement: le champ photovoltaïque et le système de stockage (batteries au plomb, USEH, ou stockage hybride USEH/batteries). La taille des composants est calculée pour satisfaire l'autonomie du système sur une année de fonctionnement. Il est testé pour 160 profils de charge (1kW en moyenne annuelle) et trois situations géographiques (Algérie, France et Norvège). Deux coefficients sont mis en place pour traduire la corrélation entre la consommation de l'usager et la disponibilité de la ressource renouvelable, à l'échelle journalière et saisonnière. Parmi les cas testés, le coefficient de corrélation saisonnier montre une valeur limite permettant de préconiser le stockage le plus adapté au cas étudié. L'emploi de l'USEH au lieu de batteries au plomb peut conduire à accroître le rendement du système, à réduire la taille du champ photovoltaïque et à optimiser l'exploitation de la ressource renouvelable. Dans tous les cas testés, l'hybridation de l'USEH avec des batteries permet d'améliorer le dimensionnement et les performances du système, avec un gain sur le rendement de 10 à 40 % selon le lieu testé. La confrontation des résultats de simulation à des données de systèmes réels a permis de valider les modèles utilisés.
4

Mise en place et développement d'un outil de diagnostic in situ basé sur la spectroscopie d'impédance électrochimique pour l'étude des électrolyseurs haute température à oxyde solide / In situ diagnosis tool based on electrochemical impedance spectroscopy for the study of high temperature solid oxide electrolyzers

Nechache, Aziz 10 June 2014 (has links)
Un outil de diagnostic in situ pour l'étude des électrolyseurs à oxyde solide, fondé sur la spectroscopie d'impédance électrochimique, a été mis en place à travers une analyse systématique de l'influence de plusieurs paramètres (densité de courant, température, composition et débit des gaz) sur les performances et le comportement d'une monocellule commerciale dans une configuration à 2 électrodes. Les principaux phénomènes régissant le fonctionnement de la cellule ont été identifiés. Une analyse de son comportement après apparition et évolution dans le temps d'une dégradation prématurée, suite à une modification sur le banc d'essai, a été réalisée. Un mécanisme expliquant l'origine et les conséquences de cette dégradation prématurée a été proposé. Une étude sur l'influence de l'épaisseur d'une des deux électrodes de la cellule a par ailleurs permis de distinguer deux des phénomènes principaux liés à la diffusion de H2O à l'électrode Ni-YSZ. Enfin, l'étude du comportement de la cellule après dégradation par conduction électronique de l'électrolyte YSZ a mis en évidence la formation de porosités entrainant notamment des délaminations à l'interface YSZ/YDC. Un état de dégradation plus avancé que pour les tests précédents a été observé pour les couches YDC et Ni-YSZ. Ce phénomène se manifeste par un déplacement en fréquence de l'ensemble du diagramme d'impédance mesuré vers les plus basses fréquences, formant une boucle négative. Rp finit par disparaitre, le courant circulant alors majoritairement via la conduction électronique de l'électrolyte YSZ. / An in situ diagnosis tool, based on electrochemical impedance spectroscopy, for the study of solid oxide electrolyzer cells was established through the analysis of the influence of several parameters (current density, temperature, gas composition and gas flow rate) on the performances and the behavior of a commercial single cell studied in a two-electrode configuration. The main phenomena governing the cell were identified. An analysis of its behavior after appearance and evolution with time of a premature degradation was carried out. A mechanism explaining the origin and the consequences of such degradation was suggested. Furthermore, studying the influence of the cathode thickness allowed distinguishing two of the main phenomena associated to H2O diffusion at the Ni-YSZ electrode. In addition, a study of the cell behavior after degradation by electronic conduction of the YSZ electrolyte showed formation of numerous porosities leading to delaminations at the YSZ/YDC interface. This phenomenon was characterized by a shift of the overall impedance diagram to the lowest frequencies, with appearance of a negative loop which finally leads to the disappearance of Rp as the current circulates mostly via electronic conduction of the YSZ electrolyte.
5

Convertisseurs continu-continu non isolés à haut rapport de conversion pour Piles à Combustible et Electrolyseurs - Apport des composants GaN

Videau, Nicolas 05 May 2014 (has links) (PDF)
Face aux enjeux énergétiques d'aujourd'hui et de demain, le développement des énergies renouvelables semble inéluctable. Cependant, la production électrique de sources renouvelables prometteuses comme le photovoltaïque ou l'éolien est intermittente et difficilement prévisible du fait de la dépendance de ces sources aux conditions météorologiques. Afin de s'affranchir du caractère discontinu de la production d'électricité et de l'inadéquation de la production avec la consommation, un moyen de stockage de l'énergie électrique est nécessaire. Dans ce contexte, la batterie hydrogène est une des solutions envisagées. Lors de périodes de surproduction d'énergie renouvelable, un électrolyseur produit de l'hydrogène par électrolyse de l'eau. Lorsque cela est nécessaire, une pile à combustible fournit de l'électricité à partir du gaz stocké. Couplé avec des sources d'énergie renouvelable, la batterie produit de l'énergie électrique non carbonée, c'est-à-dire non émettrice de gaz à effet de serre. L'intérêt majeur de cette technologie est le découplage entre l'énergie et la puissance du système. Tant que la pile est alimentée en gaz, elle fournit de l'électricité, l'énergie dépend des réservoirs de gaz. La puissance quant à elle, dépend des caractéristiques des composants électrochimiques et du dimensionnement des chaînes de conversions de puissance. Les chaînes de conversions de puissance relient les composants électrochimiques au réseau électrique. Dans le cas de la chaîne de conversion sans transformateur qui est envisagée ici, la présence d'un convertisseur DC-DC à haut rendement est rendue nécessaire de par la caractéristique basse tension fort courant des composants électrochimiques. Avec pour but principal l'optimisation du rendement, deux axes de recherches sont développés. Le premier axe de recherche développe un convertisseur multicellulaire innovant à haut rendement à fort ratio de conversion. Les résultats expérimentaux du convertisseur appelé 'miroir' obtenu dans deux expérimentations ont démontré la supériorité de cette topologie en terme d'efficacité énergétique par rapport aux convertisseurs conventionnels. Le deuxième axe de recherche porte sur de nouveaux composants de puissance au nitrure de gallium (GaN) annoncés comme une rupture technologique. Un convertisseur buck multi-phases illustre les défis technologique et scientifique de cette technologie et montre le fort potentiel de ces composants.
6

Contribution à l’étude de l’influence des régimes bi-phasiques sur les performances des électrolyseurs de type PEM basse pression : approche numérique, analytique et expérimentale / Contribution to the study of the influence of bi-phasic regimes on the performance of electrolysers of low pressure PEM type : numerical, analytical and experimental approach

Aubras, Farid 27 April 2018 (has links)
Les électrolyseurs à membrane échangeuse de protons basse pression (E-PEMs) apparaissent comme une solution efficace et durable pour la production d’hydrogène. Cette technologie pourrait permettre de pallier l’intermittence des énergies renouvelables (notamment solaire et éolien) en convertissant l’énergie électrique produite en énergie chimique (hydrogène). Durant ces travaux de thèse, trois aspects ont été développés : une approche analytique, une approche numérique, ainsi que approche expérimentale. Ces trois approches ont permis de comprendre l’influence du mélange bi-phasique eau/oxygène à l’anode du système sur les performances électrochimiques des E-PEMS ainsi que déterminer les paramètres opérationnels et intrinsèques qui impactent les performances des E-PEMs. À propos de l'approche expérimentale, des mesures d'impédance électrochimique ainsi que des courbes de polarisation ont été réalisées sur deux différentes cellules d'électrolyseurs de type PEM basse pression (la cellule ITW power de l'Electrochimical innovation Lab (UCL) et la cellule réversible Q-URFC du Laboratoire d'Énergétique, d'Électronique et Procédés (LE2P). À propos de la modélisation numérique, Le modèle expérimentale conjugue une approche multi-échelle macroscopique 2D et mésoscopique 1D. Ce modèle prend en compte le transfert de matière, le transfert de chaleur, les réactions électrochimiques anodique et cathodique et le transfert de charges présents dans le cœur des E-PEMs. D’un point de vue mésoscopique, une attention particulière a été portée sur l’influence des régimes bi-phasiques anodiques (régime de bulles coalescées (BC régime) et régime de bulles non coalescées (NCB régime) sur le transfert de matière à l’anode et sur l’humidification de la membrane. Ces travaux démontrent et confirment l’hypothèse que la transition du NCB régime vers le CB régime augmente le transfert de matière anodique, diminue la résistance ohmique de la membrane et améliore l’efficacité des E-PEMs. À propos de la modèle analytique, l’étude analytique explore une approche adimensionnelle de l'assemblage membrane électrode (AME) en régime stationnaire et isotherme. À l’échelle locale, en 1D, les équations prises en compte sont la conservation du courant dans l’AME, les réactions électrochimiques au sein des couches actives et le transfert de matière à travers la membrane. La résolution a permis d’obtenir des expressions analytiques des surtensions aux électrodes, de la chute ohmique et de la teneur en eau dans la membrane. L’approche adimensionnelle a permis de quantifier analytiquement les sources d’irréversibilités (chute ohmique, surtensions d’activations anodique et cathodique, et de la surtension induite par le bouchonnement des canaux anodiques) respectivement pour les faibles densités de courant, les moyennes densités de courant et les hautes densités de courant. En outre, ce modèle analytique peut être implémenté dans une boucle de contrôle commande. Ces travaux de thèse proposent une contribution à la compréhension du fonctionnement des E-PEMs basse pression en général, et en particulier de l'impact des régimes bi-phasiques sur leurs performances électro-chimiques. / Based on proton conduction of polymeric electrolyte membrane (PEM) technology, the water electrolysis (PEMWE) offers an interesting solution for efficiency hydrogen production. During the electrolysis process of water in PEMWE, the anodic side is the place where the water is splitting into oxygen, protons and electrons. The aim of this study is to recognize the link between two-phase flows (anode side) and cell performance under low pressure conditions. We have developed three approaches: the analytical approach and the numerical approach validated by the experimental data. For the numerical model, we have developed a two-dimensional stationary PEMWE model that takes into account electro-chemical reaction, mass transfer (bubbly flow), heat transfer and charges balance through the Membrane Electrodes Assembly (MEA). In order to take into account the changing electrical behavior, our model combines two scales of descriptions: at microscale within anodic active layer and MEA scale. The water management at both scales is strongly linked to the slug flow regime or the bubbly flow regime. Therefore, water content close to active surface areas depends on two-phase flow regimes. Our simulation results demonstrate that the transition from bubble to slug flow in the channel is associated with improvement in mass transport, a reduction of the ohmic resistance and an enhancement of the PEMWE efficiency. Regarding the analytical model, we have developed a one-dimensional stationary isothermal PEMWE model that takes into account electro-chemical reaction, mass transfer and charges balance through the Membrane Electrodes Assembly (MEA). The analytical approach permit to obtain mathematical solution of the activation overpotential, the ohmic losses and the bubbles overpotential respectively for the low current density, the middle current density and the high current density. This approach quantify the total overpotential of the cell, function of the operational and intrinsic numbers. In terms of perspective, the analytical model could be used for the diagnostic of the electrolyzer PEM.
7

Investigation of the anodes of PEM water electrolyzers by operando synchrotron-based photoemission spectroscopy / Etude in operando d’anodes d’électrolyseurs de l'eau de type PEM par spectroscopie de photoémission avec le rayonnement synchrotron

Saveleva, Viktoriia 29 January 2018 (has links)
Le développement de catalyseurs de la réaction de dégagement de l’oxygène (OER) pour les électrolyseurs à membrane échangeuse de protons (PEM) dépend de la compréhension du mécanisme de cette réaction. Cette thèse est consacrée à l'application de la spectroscopie d’émission de photoélectrons induits par rayons X (XPS) et de la spectroscopie de structure près du front d'absorption de rayons X (NEXAFS) operando sous une pression proche de l'ambiante (NAP) dans le but d’étudier les mécanismes de la réaction d’oxydation de l’eau sur des anodes à base d’iridium et de ruthénium et leurs dégradation dans les conditions de la réaction. Cette thèse montre les mécanismes différents de la réaction OER pour les anodes à base d’Ir et de Ru impliquant respectivement des transitions anioniques (formation d’espèce OI- électrophile) ou cationiques (formation des espèces de Ru avec l’état d'oxydation supérieur à IV) quelle que soit la nature (thermique ou électrochimique) des oxydes. / Development of oxygen evolution reaction (OER) catalysts for proton exchange membrane water electrolysis technology depends on the understanding of the OER mechanism. This thesis is devoted to the application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and near edge X-ray absorption fine structure (NEXAFS) techniques for operando investigation of the Ir, Ru - based anodes. For Ru-based systems, we observe the potential-induced irreversible transition of Ru (IV) from an anhydrous to a hydrated form, while the former is stabilized in the presence of Ir. Regarding single Ir-based anodes, the analysis of O K edge spectra reveals formation of electrophilic oxygen OI- as an OER intermediate. Higher stability of Ir catalysts supported on antimony-doped tin oxide (ATO) is related to their lower oxidation. This work demonstrates different OER mechanisms on Ir, Ru-based anodes involving anion and cation red-ox chemistry, correspondingly, regardless the oxide nature.
8

Convertisseurs continu-continu non isolés à haut rapport de conversion pour piles à combustible et électrolyseurs : apport des composants GaN / Non-isolated high voltage ratio DC-DC converter for fuel cell and electrolyzer : GaN transistors

Videau, Nicolas 05 May 2014 (has links)
Face aux enjeux énergétiques d’aujourd’hui et de demain, le développement des énergies renouvelables semble inéluctable. Cependant, la production électrique de sources renouvelables prometteuses comme le photovoltaïque ou l’éolien est intermittente et difficilement prévisible du fait de la dépendance de ces sources aux conditions météorologiques. Afin de s’affranchir du caractère discontinu de la production d’électricité et de l’inadéquation de la production avec la consommation, un moyen de stockage de l’énergie électrique est nécessaire. Dans ce contexte, la batterie hydrogène est une des solutions envisagées. Lors de périodes de surproduction d’énergie renouvelable, un électrolyseur produit de l’hydrogène par électrolyse de l’eau. Lorsque cela est nécessaire, une pile à combustible fournit de l’électricité à partir du gaz stocké. Couplé avec des sources d’énergie renouvelable, la batterie hydrogène produit de l’énergie électrique non carbonée, c’est-à-dire non émettrice de gaz à effet de serre. L’intérêt majeur de cette technologie est le découplage entre l’énergie et la puissance du système. Tant que la pile à combustible est alimentée en gaz, elle fournit de l’électricité, l’énergie dépend des réservoirs de gaz. La puissance, quant à elle, dépend des caractéristiques des composants électrochimiques et du dimensionnement des chaînes de conversions de puissance. Les chaînes de conversion de puissance relient les composants électrochimiques au réseau électrique. Dans le cas de la chaîne de conversion sans transformateur qui est ici envisagée, la présence d’un convertisseur DC-DC à haut rendement à fort ratio de conversion est rendue nécessaire de par la caractéristique basse tension fort courant des composants électrochimiques. Avec pour but principal l’optimisation du rendement, deux axes de recherche sont développés. Le premier axe développe un convertisseur multicellulaire innovant à haut rendement à fort ratio de conversion. Les résultats expérimentaux du convertisseur appelé « miroir » obtenus dans deux expérimentations ont démontré la supériorité de cette topologie en terme d’efficacité énergétique par rapport aux convertisseurs conventionnels. Le deuxième axe porte sur de nouveaux composants de puissance en nitrure de gallium (GaN) annoncés comme une rupture technologique. Un convertisseur buck multi-phases illustre les défis technologiques et scientifiques de cette technologie et montre le fort potentiel de ces composants. / Development of renewable energy seems inevitable to face the energy challenge of today and tomorrow. However, the power generation of promising renewable sources such as solar or wind power is intermittent and unpredictable due to the dependence of the these sources to the weather. In order to overcome the discontinuous nature of the electricity production and the mismatch between production and consumption, electrical energy storage is needed. In this context, hydrogen battery is one of the solutions. During periods of overproduction of renewable energy, an electrolyzer produces hydrogen gas by the electrolysis of water. When necessary, a fuel cell provides electricity from the stored gas. Coupled with renewable energy sources, the hydrogen battery produces carbon-free electricity, i.e. without any greenhouse gas emission. The major advantage of this technology is the decoupling between energy and power system. As long as the fuel cell is supplied with gas, it supplies electricity. Like so, the energy depends on the gas tanks and the system power depends on the characteristics of electrochemical components and the design of the power conversion chain. Power converters connect electrochemical components to the grid. In the case of the transformerless conversion system introduce here, a high efficiency high voltage gain DC-DC converter is required given the high-current low-voltage characteristic of electrochemical components. Since the main goal is to optimize the efficiency, two research approaches are developed. The first develops an innovating multicell converter with high efficiency at high voltage conversion ratio. The experimental results of the “mirror” converter obtained in two experiments have demonstrated the superiority of this topology in terms of energy efficiency compared to conventional converters. The second line of research focuses on new gallium nitride (GaN) transistors heralded as a disruptive technology. A multiphase buck converter illustrates the technological and scientific challenges of this technology and shows the potential of these transistors.
9

Development of models for inegrating renewables and energy storage components in smart grid applications / Développement des modèles pour l'intégration des énergies renouvelables et des composants de stockage d'énergie dans les applications Smart Grid

Barakat, Mahmoud 26 June 2018 (has links)
Cette thèse présente un modèle unique du MASG (Modèle d’Architecture du Smart Grid) en considérant l 'état de l’art des différentes directives de recherche du smart grid. Le système hybride de génération d'énergie active marine-hydrogène a été modélisé pour représenter la couche de composants du MASG. Le système intègre l'électrolyseur à membrane d’échange de proton (à l’échelle de méga watt) et les systèmes de piles à combustible en tant que composants principaux du bilan énergétique. La batterie LiFePO4 est utilisée pour couvrir la dynamique rapide de l'énergie électrique. En outre, la thèse analyse le système de gestion de l'énergie centralisé et décentralisé. Le système multi-agents représente le paradigme du système décentralisé. La plate-forme JADE est utilisée pour développer le système multi-agents, en raison de son domaine d'application général, de ses logiciels à licence libre, de son interface avec MATLAB et de sa calculabilité avec les standards de la Fondation des Agents Physiques Intelligentes. Le système de gestion d'énergie basé sur JADE équilibre l'énergie entre la génération (système de conversion d'énergie marine-courant) et la demande (profil de charge résidentielle) pendant les modes de fonctionnement autonome et connecté au réseau. Le modèle proposé du MASG peut être considéré comme une étude de cas pilote qui permet l'analyse détaillée et les applications des différentes directions de recherche du smart grid. / This thesis presents a unique model of the SGAM (Smart Grid Architecture Model) with considering the state of the art of the different research directions of the smart grid and. The hybrid marine-hydrogen active power generation system has been modeled to represent the component layer of the SGAM. The system integrates the MW scale PEM electrolyzer and fuel cell systems as the main energy balance components. The LiFePO4 battery is used to cover the fast dynamics of the electrical energy. Moreover, the thesis analyzes the centralized and the decentralized energy management system. The MAS (Multi-Agent Systems) represents the paradigm of the decentralized system. The JADE platform is used to develop the MAS due to its general domain of application, open source and free license software, interface with MATLAB and the computability with the FIPA (Foundation of Intelligent Physical Agent) standards. The JADE based energy management system balances the energy between the generation (marine-current energy conversion system) and the demand side (residential load profile) during the stand-alone and the grid-connected modes of operation. The proposed model of the SGAM can be considered as a pilot case study that enables the detailed analysis and the applications of the different smart grid research directions.

Page generated in 0.0427 seconds