• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Asymptotic and numerical methods for fluid-structure interaction problems and applications to the materials science and engineering / Méthodes asymptotiques et numériques pour les problèmes d’interaction fluide-solide et applications en science des matériaux et en science pour ingénieur

Malakhova-Ziablova, Irina 12 February 2015 (has links)
Le but de cette thèse pluridisciplinaire est d’étudier le problème de l’interaction fluide-structure à partir du point de vue mathématique et physique. Des problèmes d’interaction d’un fluide visqueux avec une structure élastique décrivent, par exemple, des interactions entre le manteau terrestre et de la croûte terrestre, le sang et la paroi vasculaire dans un vaisseau sanguin, etc. En génie l’interaction fluide visqueux-structure apparaît lors de la formation de solution colloïdale quand un laser passe à travers le fluide influençant le substrat (ablation laser dans un liquide). Fusion sélective au laser (FSL) est utilisée pour étudier le comportement des contraintes résiduelles en dépendance des propriétés thermoélastiques et mécaniques du matériau et des formes variées des cordons rechargés. A partir du point de vue mathématique le système couplé “flux fluide visqueux – plaque mince élastique” en 3D lorsque l’épaisseur de la plaque, E, tend vers zéro, tandis que la densité et le module de Young du matériau élastique sont d’ordre 1 et E-3, respectivement, est considéré. Le solide est couché par le fluide qui occupe un domaine épais. La modélisation multi-échelle est effectuée pour la partie élastique. Le développement asymptotique complet est construit lorsque E tend vers zéro. L’existence, la régularité et l’unicité de la solution pour le problème initial sont étudiées au moyen de techniques variationnelles. La méthode de décomposition asymptotique partielle du domaine est appliquée pour le système couplé. L’erreur de la méthode est évaluée / The goal of this multi-disciplinary thesis is to study the fluid-structure interaction problem from mathematical and physical viewpoints. Viscous fluid-structure interaction problems describe, for example, interactions between the Earth mantle and the Earth crust, the blood and the vascular wall in a blood vessels, etc. In engineering viscous fluid-structure interaction appears during colloidal solution formation when a laser pierce through the fluid influencing the substrate (laser ablation in a liquid). Selective laser melting (SLM) is used to study the behavior of residual stresses depending on the thermoelastic and mechanical properties of the material and on various forms of reloaded beads. From mathematical point of view the coupled system “viscous fluid flow-thin elastic plate” in 3D when the thickness of the plate, E, tends to zero, while the density and the Young’s modulus of the plate material are of order 1 and E-3, respectively, is considered. The plate lies on the fluid which occupies a thick domain. The multi-scale modeling is performed for the elastic part. The complete asymptotic expansion is constructed when E tends to zero. The existence, the regularity and the uniqueness of the solution for the original problem are studied by means of variational techniques. The method of asymptotic partial domain decomposition is applied for the coupled system. The error of the method is evaluated
12

Théorie des semi-groupes pour les équations de Stokes et de Navier-Stokes avec des conditions aux limites de type Navier / Semi-group theory for the Stokes and Navier-Stokes equations with Navier-type boundary conditions

Al Baba, Hind 10 June 2015 (has links)
Cette thèse est consacrée à l'étude théorique mathématique des équations de Stokes et de Navier-Stokes dans un domaine borné de R^3 en utilisant la théorie des semi-groupes. Trois différents types de conditions seront considérés : des conditions aux limites de Navier, de type-Navier et des conditions qui dépendent de la pression. Ce manuscrit est composé de six chapitres. Tout d'abord nous commençons par un état de l'art sur les équations de Navier-Stokes. Ensuite nous démontrons l'analyticité du semi-groupe de Stokes avec chacune des conditions ci-dessus. Ceci permet de résoudre le problème d'évolution en utilisant la théorie des semi-groupes. Nous étudions également les puissances complexes et fractionnaires de l'opérateur de Stokes pour lesquelles nous démontrons certaines propriétés et estimations. Ces résultats seront utilisés dans la suite pour obtenir des estimations de type L^p-L^q pour le semi-groupe de Stokes, un résultat de régularité L^p-L^q maximale pour le problème de Stokes inhomogène et des résultats d'existence et d'unicité locale pour le problème non-linéaire. Après nous étudions le problème d'évolution de Stokes. Outre la régularité L^p-L^q maximale, nous démontrons l'existence des solutions faibles u∈L^q (0,T; W^(1,p) (Ω)), fortes u∈L^q (0,T; W^(2,p) (Ω)) et très faibles u∈L^q (0,T; L^p (Ω)) du problème de Stokes. On termine par l'étude du problème de Navier-Stokes avec chacune des conditions aux limites citées ci-dessus. Tout d'abord, en utilisant les estimations L^p-L^q on démontre l'existence d'une unique solution locale u qui vérifieu∈BC([0,T_0 ); L_(σ,τ)^p (Ω))∩L^q (0,T_0; L_(σ,τ)^r (Ω)), q,r>p, 2/q+3/r=3/p.De plus, pour une donnée initiale petite, on obtient l'existence globale des solutions. Ensuite en estimant le terme non-linéaire en fonction des puissances fractionnaires de l'opérateur de Stokes on démontre la régularité de la solution. / This thesis is devoted to the mathematical theoretical study of the Stokes and Navier-Stokes equations in a bounded domain of R^3 using the semi-group theory. Three different types of boundary conditions will be considered: Navier boundary conditions, Navier-type boundary conditions and boundary condition involving the pressure. This manuscript contains six chapters. We prove first the analyticity of the Stokes semi-group with each of the boundary conditions stated above. This allows us to solve the time dependent Stokes problem using the semi-group theory. We will study also the complex and fractional powers of the Stokes operator for which we prove some properties and estimations. These results will be used in the sequel to prove an estimate of type L^p-L^q for the Stokes semigroup, as well as the maximal L^p-L^q regularity for the inhomogeneous Stokes problem and an existence result for the non-linear problem. Next we study the time dependent Stokes problem, besides the maximal L^p-L^q regularity, we prove the existence of weak u∈L^q (0,T; W^(1,p) (Ω)), strong u∈L^q (0,T; W^(2,p) (Ω)) and very weak u∈L^q (0,T; L^p (Ω)) solutions to the Stokes problem. We end with the study of the Navier-Stokes problem. First using the L^p-L^q estimate for the Stokes semi-group we prove the existence of a unique local in time mild solution for the Navier-Stokes problem that verifies u∈BC([0,T_0 ); L_(σ,τ)^p (Ω))∩L^q (0,T_0; L_(σ,τ)^r (Ω)), q,r>p, 2/q+3/r=3/p.Furthermore, for some initial data the solution is global in time. Finally, by estimating the non-linear term as a function of the fractional powers of the Stokes operator we prove that the solution is regular.
13

Détection d’un objet immergé dans un fluide / Location of an object immersed in a fluid

Caubet, Fabien 29 June 2012 (has links)
Cette thèse s’inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de détection à l’aide du calcul de forme et de l’analyse asymptotique. L’objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes :– peut-on détecter un objet immergé dans un fluide à partir d’une mesure effectuée à la surface ?– peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ?– peut-on connaître le nombre d’objets présents dans le fluide en utilisant cette mesure ?Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse :– le premier met en place un cadre mathématique pour démontrer l’existence des dérivées de forme d’ordre un et deux pour les problèmes de détection d’inclusions ;– le deuxième analyse le problème de détection à l’aide de l’optimisation géométrique de forme : un résultat d’identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l’instabilité de ce problème inverse est enfin démontrée ;– le chapitre 3 utilise nos résultats théoriques pour reconstruire numériquement des objets immergés dans un fluide à l’aide d’un algorithme de gradient de forme ;– le chapitre 4 analyse la localisation de petites inclusions dans un fluide à l’aide de l’optimisation topologique de forme : le gradient topologique d’une fonctionnelle de forme de Kohn-Vogelius est caractérisé ;– le dernier chapitre utilise cette dernière expression théorique pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l’aide d’un algorithme de gradient topologique. / This dissertation takes place in the mathematic field called shape optimization. More precisely, we focus on a detecting inverse problem using shape calculus and asymptotic analysis. The aim is to localize an object immersed in a viscous, incompressible and stationary fluid. This work was motivated by the following main questions:– can we localize an obstacle immersed in a fluid from a boundary measurement?– can we reconstruct numerically this object, i.e. be close to its localization and its shape, from this measure?– can we know how many objects are included in the fluid using this measure?The results are described in the five chapters of the thesis:– the first one gives a mathematical framework in order to prove the existence of the shape derivatives oforder one and two in the frame of the detection of inclusions;– the second one analyzes the detection problem using geometric shape optimization: an identifiabilityresult is proved, the shape gradient of several shape functionals is characterized and the instability of thisinverse problem is proved;– the chapter 3 uses our theoretical results in order to reconstruct numerically some objets immersed in a fluid using a shape gradient algorithm;– the fourth chapter analyzes the detection of small inclusions in a fluid using the topological shape optimization : the topological gradient of a Kohn-Vogelius shape functional is characterized;– the last chapter uses this theoretical expression in order to determine numerically the number and the location of some small obstacles immersed in a fluid using a topological gradient algorithm.
14

Contrôle en temps optimal et nage à bas nombre de Reynolds

Lohéac, Jérôme 06 December 2012 (has links) (PDF)
Cette thèse est divisée en deux parties, le fil directeur étant la contrôlabilité en temps optimal. Dans la première partie, après un rappel du principe du maximum de Pontryagin dans le cas des systèmes de dimension finie, nous mettrons en œuvre ce principe sur le cas d'un intégrateur non-holonome connu sous le nom de système de Brockett pour lequel nous imposons des contraintes sur l'état. La difficulté de cette étude provient du fait que l'on considère un problème de contrôle avec des contraintes sur l'état. Après cet exemple, nous nous intéressons à une extension du principe du maximum de Pontryagin au cas des systèmes de dimension infinie. Plus précisément, l'extension que nous considérons s'applique au cas de systèmes exactement contrôlables en tout temps. Typiquement, ce résultat s'applique à l'équation de Schrödinger avec contrôle interne. Pour de tels systèmes, sous une condition de contrôlabilité approchée, depuis un ensemble de temps non négligeable, nous montrons l'existence d'un contrôle bang-bang. Dans la seconde partie, nous étudions le problème de la nage à bas nombre de Reynolds. Une modélisation physique convenable nous permet de le formaliser comme un problème de contrôle. Nous obtenons alors un résultat de contrôlabilité sur ce problème. Plus précisément, nous montrons que quelque soit la forme du nageur, celui-ci peut se déformer légèrement pour suivre une trajectoire imposée. Nous étudions ensuite le cas d'un nageur à symétrie axiale. Les résultats de la première partie permettent alors la recherche d'un contrôle en temps optimal.

Page generated in 0.1168 seconds