• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles cinétiques de particules en interaction avec leur environnement / Kinetics models of particles interacting with their environment

Vavasseur, Arthur 24 October 2016 (has links)
Dans cette thèse, nous étudions la généralisation à une infinité de particules d'un modèle hamiltonien décrivant les interactions entre une particule et son environnement. Le milieu est considéré comme une superposition continue de membranes vibrantes. Au bout d'un certain temps, tout se passe comme si la particule était soumise à une force de frottement linéaire. Les équations obtenus pour un grand nombre de particules sont proches des équations de Vlasov. Dans un premier chapitre, on montre d'abord l'existence et l'unicité des solutions puis on s'intéresse à certains régimes asymptotiques; en faisant tendre la vitesse des ondes dans le milieu vers l'infini et en redimensionnant les échelles, on obtient à la limite une équation de Vlasov, on montre que si l'on modifie en plus une fonction paramètrisant le système, on obtient l'équation de Vlasov-Poisson attractive. Dans un deuxième chapitre, on ajoute un terme de diffusion à l'équation. Cela correspond à prendre en compte une agitation brownienne et un frottement linéaire sur les particules. Le principal résultat de ce chapitre est la convergence de la distribution de particules vers une unique distribution stationnaire. On montre la limite de diffusion pour ce nouveau système en faisant tendre simultanément la vitesse de propagation vers l'infini. On obtient une équation plus simple pour la densité spatiale. Dans le chapitre 3, nous montrons la validité des équations déjà étudiées par une limite de champ moyen. Dans le dernier chapitre, on étudie l'asymptotique en temps long de l'équation décrivant l'évolution de la densité spatiale obtenue dans le chapitre 2, des résultats faibles de convergence sont obtenus / The goal of this PhD is to study a generalisation of a model describing the interaction between a single particle and its environment. We consider an infinite number of particles represented by their distribution function. The environment is modelled by a vibrating scalar field which exchanges energy with the particles. In the single particle case, after a large time, the particle behaves as if it were subjected to a linear friction force driven by the environment. The equations that we obtain for a large number of particles are close to the Vlasov equation. In the first chapter, we prove that our new system has a unique solution. We then care about some asymptotic issues; if the wave velocity in the medium goes to infinity, adapting the scaling of the interaction, we connect our system with the Vlasov equation. Changing also continuously a function that parametrizes the model, we also connect our model with the attractive Vlasov-Poisson equation. In the second chapter, we add a diffusive term in our equation. It means that we consider that the particles are subjected to a friction force and a Brownian motion. Our main result states that the distribution function converges to the unique equilibrium distribution of the system. We also establish the diffusive limit making the wave velocity go to infinity at the same time. We find a simpler equation satisfied by the spatial density. In chapter 3, we prove the validity of both equations studied in the two first chapters by a mean field limit. The last chapter is devoted to studying the large time asymptotic properties of the equation that we obtained on the spatial density in chapter 2. We prove some weak convergence results
2

Comportement en temps long d'équations de type Vlasov : études mathématiques et numériques / Long time behavior of certain Vlasov equations : mathematics and numerics

Horsin, Romain 01 December 2017 (has links)
Cette thèse porte sur le comportement en temps long de solutions d’équations de type Vlasov, principalement le modèle Vlasov-HMF. On s’intéresse en particulier au phénomène d’amortissement Landau, prouvé mathématiquement dans divers cadres, pour plusieurs équations de type Vlasov, comme l’équation de Vlasov-Poisson ou le modèle Vlasov-HMF, et présentant certaines analogies avec le phénomène d’amortissement non visqueux pour l’équation d’Euler 2D. Les résultats qui y sont décrits sont les suivants. Le premier est un théorème d’amortissement Landau pour des solutions numériques du modèle Vlasov-HMF, obtenues par discrétisation en temps de ce dernier via des méthodes de splitting. Nous prouvons en outre la convergence des schémas numériques. Le second est un théorème d’amortissment Landau pour des solutions du modéle Vlasov-HMF linéarisé autour d’états stationnaires inhomogènes. Ce théorème est accompagné de nombreuses simulations numériques destinées à étudier numériquement le cas non-linéaire, et semblant mettre en lumière de nouveaux phénomènes. Enfin, le dernier résultat porte sur la discrétisation en temps de l’équation d’Euler 2D par un intégrateur de Crouch-Grossman symplectique. Nous prouvons la convergence du schéma. / This thesis concerns the long time behavior of certain Vlasov equations, mainly the Vlasov- HMF model. We are in particular interested in the celebrated phenomenon of Landau damp- ing, proved mathematically in various frameworks, foar several Vlasov equations, such as the Vlasov-Poisson equation or the Vlasov-HMF model, and exhibiting certain analogies with the inviscid damping phenomenon for the 2D Euler equation. The results described in the document are the following.The first one is a Landau damping theorem for numerical solutions of the Vlasov-HMF model, constructed by means of time-discretizations by splitting methods. We prove more- over the convergence of the schemes. The second result is a Landau damping theorem for solutions of the Vlasov-HMF model linearized around inhomogeneous stationary states. We provide moreover a quite large amount of numerical simulations, which are designed to study numerically the nonlinear case, and which seem to show new phenomenons. The last result is the convergence of a scheme that discretizes in time the 2D Euler equation by means of a symplectic Crouch-Grossmann integrator.

Page generated in 0.0922 seconds