Spelling suggestions: "subject:"algebras"" "subject:"álgebra""
141 |
O problema de Nathan Jacobson e questões relacionadas / On a problem by Nathan Jacobson and related questionsVictor Hugo López Solís 30 October 2017 (has links)
Este trabalho consiste de três partes: Teoremas de coordenatização de Wedderburn e de Zorn, O problema de Nathan Jacobson e Teoremas de Fatorização de Kronecker para as superálgebras alternativas. Na primeira parte apresentamos os teoremas de coordenatização de Wedderburn e de Zorn e suas aplicações na teoria de representações das álgebras associativas e alternativas. Na segunda parte resolvemos um problema de longa data que foi anunciado por Nathan Jacobson sobre a descrição das álgebras alternativas que contém M₂(F ) (álgebra associativa de matrizes 2 × 2) com o mesmo elemento identidade. Na terceira parte damos uma prova independente que é válida em qualquer característica do clássico Teorema de Fatorização de Kronecker de Nathan Jacobson. Generalizamos esse resultado e provamos um teorema de Fatorização de Kronecker para as superálgebras alternativas cuja parte par contém O com o mesmo elemento identidade. Além disso, provamos um Teorema de Fatorização de Kronecker para as superálgebras alternativas que contêm a superálgebra associativa M(1|1)(F ) com o mesmo elemento identidade. Como Corolário desse resultado, respondemos a um análogo do problema de Jacobson para as superálgebras alternativas, isto é, descrevemos as superálgebras alternativas que contêm à superálgebra associativa M(1|1)(F ) com o mesmo elemento identidade. Finalmente, estudamos as representações das superálgebras alternativa simples O(4,4) e O[u]. Classificamos os bimodules sobre essas superálgebras e provamos alguns análogos do Teorema de Fatorização de Kronecker para as superálgebras alternativas que contenham O(4|4) ou O[u] com o mesmo elemento identidade / This work consists of three parts: Wedderburn and Zorn coordinatizations theorems, Nathan Jacobsons problem and Kroneckers Factorization theorems for alternative superalgebras. In the first part we present Wedderburn and Zorn coordinatizations theorems and their applications in the theory of representations of associative and alternative algebras. In the second part we solve a long standing problem that was announced by Nathan Jacobson on the description of alternative algebras containing M₂(F ) (associative matrix algebra 2 × 2) with the same identity element. In the third part we give an independent proof that is valid in any characteristic of Nathan Jacobsons classic Kronecker Factorization Theorem. We generalize this result and prove a Kronecker Factorization Theorem for alternative superalgebras whose even part contains O with the same identity element. In addition, we prove a Kronecker Factorization Theorem for alternative superalgebras containing the associative superalgebra M(1|1)(F ) with the same identity element. As a corollary of this result, we respond to an analogue of Jacobsons problem for alternative superalgebras, that is, we describe the alternative superalgebras containing the associative superalgebra M(1|1)(F ) with the same identity element. Finally, we study the representations of the simple alternative superalgebras O(4|4) e O[u]. We classify the bimodules on these superalgebras and prove some analogues of the Kronecker Factorization Theorem for alternative superalgebras containing O(4|4) or O[u] with the same identity element
|
142 |
As 2-álgebras de Lie simples de posto toral 3 / Simple Lie 2-algebras of toral rank 3Carlos Rafael Payares Guevara 05 December 2016 (has links)
Neste trabalho estudamos as 2-álgebras de Lie simples, de dimensão finita e de posto toral 3, sobre um corpo algebricamente fechado de característica 2. Nós conjecturamos que a única 2-álgebra de Lie simples de este tipo é W(1, 3). Assim, nosso principal objetivo é verificar a veracidade desta conjectura para estas álgebras de pequenas dimensões. Como resultados, provamos que esta conjectura é certa para todas estes álgebras de dimensão menor ou igual a 16, e também em alguns casos especiais quando a dimensão é 17. / In this work we study the simple Lie 2-algebras of finite dimension, and toral rank 3 over an algebraically closed field characteristic 2. We surmise that the only simple Lie 2-algebra of this type is W(1, 3). So, our main objective is to study the truthful of this conjecture for these algebras of small dimensions. As a result, we prove that this conjecture is true for all these algebras less than or equal to 16 dimension, and also in some special cases when the dimension is 17.
|
143 |
A dimensão de Gelfand-Kirillov de certas álgebras / The Gelfand-Kirillov dimension of certain algebrasLucas Galvão 02 September 2014 (has links)
A dimensão de Gelfand-Kirillov mede a taxa de crescimento assintótico de álgebras. Como fornece informações importantes sobre a sua estrutura, este invariante se tornou uma das ferramentas padrão no estudo de álgebras de dimensão infinita. Neste trabalho apresentamos as propriedades básicas da dimensão de Gelfand-Kirillov de álgebras e de módulos, e também mostramos o cálculo da dimensão de Gelfand-Kirillov de algumas álgebras e módulos, sendo o exemplo mais importante o cálculo da dimensão de Gelfand-Kirillov da álgebra de Weyl An. / The Gelfand-Kirillov dimension measures the asymptotic rate of growth of algebras. Since it provides important structural information, this invariant has become one of the standard tools in the study of innite dimensional algebras. In this work we present the basic properties of the Gelfand-Kirillov dimension of algebras and modules, and we also show the calculation of the Gelfand-Kirillov dimension of some algebras and modules, being the most important example the calculation of the Gelfand-Kirillov dimension of the Weyl algebra An.
|
144 |
Ordem topológica com simetrias Zn e campos de matéria / Topological order with Zn symmetries and matter fieldsMaria Fernanda Araujo de Resende 03 April 2017 (has links)
Neste trabalho, construímos duas generalizações de uma classe de modelos discretos bidimensionais, assim chamados \"Quantum Double Models\", definidos em variedades orientáveis, compactas e sem fronteiras. Na primeira generalização, introduzimos campos de matéria aos vértices e, na segunda, às faces. Além das propriedades básicas dos modelos, estudamos como se comporta a sua ordem topológica sob a hipótese de que os estados de base são indexados por grupos Abelianos. Na primeira generalização, surge um novo fenômeno de confinamento. Como consequência, a degenerescência do estado fundamental se torna independente do grupo fundamental sobre o qual o modelo está definido, dependendo da ação do grupo de calibre e do segundo grupo de homologia. A segunda generalização pode ser vista como o dual algébrico da primeira. Nela, as mesmas propriedades de confinamento de quasipartículas está presente, mas a degenerescência do estado fundamental continua dependendo do grupo fundamental. Além disso, degenerescências adicionais aparecem, relacionadas ao homomorfismo de coação entre os grupos de matéria e de calibre. / In this work, we constructed two generalizations of a class of discrete bidimensional models, the so called Quantum Double Models, defined in orientable, compact and boundaryless manifolds. In the first generalization we introduced matter fields to the vertices and, in the second one, to the faces. Beside the basic model properties, we studied its topological order behaviour under the hypothesis that the basic states be indexed by Abelian groups. In the first generalization, appears a new phenomenon of quasiparticle confinement. As a consequence, the ground state degeneracy becomes independent of the fundamental group of the manifold on which the model is defined, depending on the action of the gauge group and on the second group of homology. The second generalization can be seen as the algebraic dual of the first one. In it, the same quasiparticle confinement properties are present, but the ground state degeneracy stay dependent on the fundamental group. Besides, additional degeneracies appear, related to a coaction homomorphism between matter and gauge groups.
|
145 |
Extensões cindidas por ideais nilpotentes / split-by-nilpotent extensionHeily Wagner 18 April 2008 (has links)
Consideremos A e B duas álgebras de Artin tais que é uma extensão cindida de A pelo ideal Q, onde é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias modA e modB, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja / Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories mod A and mod B such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so
|
146 |
Characters and cohomology of modules for affine Kac-Moody algebras and generalizations = Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizações / Caracteres e cohomologia de módulos para álgebras de Kac-Moody afim e generalizaçõesMacedo, Tiago Rodrigues, 1985- 06 July 2013 (has links)
Orientadores: Adriano Adrega de Moura, Daniel Ken Nakano / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-22T17:19:06Z (GMT). No. of bitstreams: 1
Macedo_TiagoRodrigues_D.pdf: 1593692 bytes, checksum: 0f44184671f53844f40df83e883c05ea (MD5)
Previous issue date: 2013 / Resumo: Nesta tese nós estudamos dois problemas principais. O primeiro problema aborda extensões de módulos para álgebras de corrente associadas a álgebras de Lie simples, complexa e de dimensão finita. Primeiro nós calculamos 1-extensões entre módulos simples de dimensão finita dessas álgebras, recuperando parcialmente um resultado de Kodera. A seguir nós desenvolvemos uma técnica para calcular extensões mais altas entre módulos simples, com a qual nós calculamos certas 2-extensões. Por fim nós mostramos que os grupos de cohomologia da álgebra de corrente são isomorfos aos da álgebra de Lie simples associada a ela, confirmando uma afirmação de Feigin. Essa parte da tese foi desenvolvida em colaboração com B. Boe, C. Drupieski e D. Nakano. O segundo problema aborda certa classe de módulos para hiperálgebras de álgebras de corrente. Quando a álgebra de Lie a qual a álgebra de corrente é associada é de tipo ADE, nós mostramos que módulos de Weyl locais são isomorfos a certos módulos de Demazure, estendendo para característica positiva um resultado de Fourier-Littelmann. Em geral, nós estendemos um resultado de Naoi, provando que módulos de Weyl locais admitem uma bandeira de Demazure, i.e., uma filtração cujos fatores são isomorfos a módulos de Demazure. Usando esse resultado, nós provamos uma conjectura de Jakelic-Moura que afirma que o caracter dos módulos de Weyl locais para hiperálgebras de laços são independentes do corpo base, desde que este seja algebricamente fechado / Abstract: In this thesis we consider two main problems. The first problem concerns extensions between simple modules for current algebras associated to complex, simple, finite-dimensional Lie algebras. To begin, we compute 1-extensions between finite-dimensional simple modules, partially recovering a result due to Kodera. Then we develop a technique aimed to compute higher extensions, and which we use to compute 2-extensions between certain simple modules. Finally we prove that cohomology groups of current algebras are isomorphic to the cohomology groups of its underlying simple Lie algebra, a result stated by Feigin. This part of the thesis arises from collaboration with B. Boe, C. Drupieski and D. Nakano. The second problem is concerned with the study of certain classes of modules for hyper algebras of current algebras. In the case that the underlying Lie algebra is simply laced, we show that local Weyl modules are isomorphic to certain Demazure modules, extending to positive characteristic a result due to Fourier-Littelmann. More generally, we extend a result of Naoi by proving that local Weyl modules admit a Demazure flag, i.e., a filtration with factors isomorphic to Demazure modules. Using this, we prove a conjecture of Jakelic-Moura stating that the character of local Weyl modules for hyper loop algebras are independent of the (algebraically closed) ground field / Doutorado / Matematica / Doutor em Matemática
|
147 |
K-teoria, periodicidade de Bott e aplicaçõesVITORIO, Henrique de Barros Correia January 2006 (has links)
Made available in DSpace on 2014-06-12T18:32:55Z (GMT). No. of bitstreams: 2
arquivo8675_1.pdf: 657729 bytes, checksum: 804c61b142d2c137eb094b7809772630 (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2006 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esta dissertação tem como principal objetivo apresentar, de maneira auto-sufuciente, a demonstração de M. Atiyah e R. Bott do Teorema de Periodicidade de Bott em K-Teoria. Para isto, somos levados a fazermos uma introdução à teoria de fibrados vetoriais e à K-teoria, discutindo os vários conceitos e resultados necessários. Ao final, como aplicação do que foi desenvolvido, apresentamos a singela demonstração de M. Atiyah do teorema de F. Adam sobre o invariante de Hopf, e como consequência deste resolvemos os problemas clássicos da paralelizabilidade das esferas e das álgebras de divisão
|
148 |
Algebras de Lie finitamente apresentaveisSilva, Viviane Moretto da 05 June 2005 (has links)
Orientador: Dessislava Hristova Kochloukova / Dissertação (mestrado) - Universidade Estadual de Campinas. Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-08-04T04:02:42Z (GMT). No. of bitstreams: 1
Silva_VivianeMorettoda_M.pdf: 772022 bytes, checksum: df78c072210885081ecac3c1e89b04fd (MD5)
Previous issue date: 2005 / Resumo: Nesta dissertação de mestrado, estudamos propriedades de álgebras de Lie. As Álgebras de Lie têm grande importância nao somente na teoria de álgebras não associativas, elas surgem também em geometria, topologia e no estudo da teoria de grupos por exemplo. As definições e resultados básicos sobre álgebras de Lie estão inclusos no Capítulo 2. Para esta parte do trabalho, utilizamos os livros [1] e [2]. O nosso enfoque foi sobre álgebras universais envelopantes, mergulhando assim a álgebra de Lie em álgebras associativas (Seções 2.4, 2.5 e 2.6). O objetivo principal da dissertação foi estudar o artigo [4], ¿Finite presentation of abelian-by-finite dimensional Lie algebras¿, que classifica álgebras de Lie finitamente apresentáveis (no sentido de serem definidas por número finito de geradores e relações) que são extensões de ideal abeliano por álgebra de Lie de dimensão finita. Definimos álgebras de Lie livres na seção 2.7.Tratam-se de objetos na categoria de álgebras de Lie que satisfazem propriedade universal semelhante a definição de grupos livres. A classificação de álgebras de Lie que são extensões de ideal abeliano por álgebra de Lie de dimensão finita usa teoria de módulos Noetherianos. No Capítulo 1 incluímos resultados básicos sobre módulos, em particular estudamos módulos Noetherianos, não
necessariamente sobre anéis comutativos (para este estudo utilizamos [9]), embora alguns resultados sejam válidos somente no caso onde o anel básico é comutativo (caso do Teorema da Base de Hilbert 1.31 no Capítulo 1). No final, nos Capítulos 3 e 4, explicamos de maneira bem minuciosa (com mais 6 detalhes que o original) o resultado principal de [4], que 'e apresentado na página 42: Proposicão 3.2: Seja L uma álgebra de Lie finitamente gerada sobre o corpo K. Suponha que L tenha um ideal abeliano A tal que L/A tem dimensão finita como espaço vetorial. Seja R álgebra universal envelopante de L/A. Suponha também que o quadrado tensorial A X A é finitamente gerado como R-módulo sobre a ação diagonal. Então L é finitamente apresentável. Os métodos da demonstração de 3.2 envolvem muitos cálculos com relações em L para mostrar que um conjunto finito E 'e suficiente para gerar todas as relações em L. Embora os cálculos sejam muitos, a técnica principal 'e a indução e a Identidade de Jacobi. A teoria de módulos Noetherianos também foi muito utilizada / Abstract: In this work we study the classification of finitely presented abelian-by-finite dimensional Lie algebras given in [4]. If L is a Lie algebra, an extension of an abelian ideal A by a finite dimensional Lie algebra L/A then L is finitely presented if and only if A X A is finitely generated as U(L/A)-module via the diagonal action, where U(L/A) is the universal enveloping algebra of L/A. We study in detail the result that finite generation of A X A over U(L/A) implies finite presentability of L / Mestrado / Matematica / Mestre em Matemática
|
149 |
Super álgebras de funções / Map superalgebrasCalixto, Lucas Henrique, 1989- 04 May 2013 (has links)
Orientador: Adriano Adrega de Moura / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-22T08:28:52Z (GMT). No. of bitstreams: 1
Calixto_LucasHenrique_M.pdf: 1707951 bytes, checksum: a7576ec9f19a4faf6e8bd959192baeb8 (MD5)
Previous issue date: 2013 / Resumo: O principal objetivo dessa dissertação é explicar a classificação dos módulos irredutíveis de dimensão finita para qualquer super álgebra de funções sobre uma super álgebra de Lie básica. Os principais resultados dizem que um módulo irredutível de dimensão finita ou é uma representação de avaliação ou é um módulo de Kac para certo módulo de avaliação generalizado. Para chegar a tal objetivo, também fazemos uma revisão detalhada da classificação das super álgebras de Lie básicas / Abstract: The goal of this dissertation is to explain the classification of the irreducible finite-dimensional representations of a map superalgebra whose underlying simple Lie superalgebra is basic. The main result says that an irreducible finite-dimensional module is either an evaluation module or a Kac module associated to a certain generalized evaluation module. We also give a detailed review of the classification of the basic Lie superalgebras / Mestrado / Matematica / Mestre em Matemática
|
150 |
The representations of HOM(2) and SIM(2) in the context of very special relativity : As representações de HOM(2) e SIM(2) no contexto da very special relativity / As representações de HOM(2) e SIM(2) no contexto da very special relativitySouza, Gustavo Salinas de, 1989- 06 January 2015 (has links)
Orientadores: Dharam Vir Ahluwalia, Pedro Cunha de Holanda / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-27T16:17:02Z (GMT). No. of bitstreams: 1
Souza_GustavoSalinasde_M.pdf: 1015499 bytes, checksum: c37e17dd874ddddc3fa8389ff81fc905 (MD5)
Previous issue date: 2015 / Resumo: O presente trabalho é dedicado a um estudo sistemático das representações dos grupos HOM(2) e SIM(2), que são subgrupos do grupo de Lorentz. É sabido que teorias cujas
simetrias são descritas por tais subgrupos preservam a constância da velocidade da luz,
esse fato sendo referido como Very Special Relativity. É mostrado que existem representa
ções de HOM(2) e SIM(2) redutíveis e de dimensão nita, que portanto não podem ser
obtidas inteiramente de representações irredutíveis. Estas são obtidas diretamente das
representações das álgebras de Lie hom(2) e sim(2), usando o conhecimento dos grupos
de cobertura universal de HOM(2) e SIM(2), que também são apresentados no texto / Abstract: The present work is devoted to a systematic study of the representations of the groups HOM(2) and SIM(2), which are subgroups of the Lorentz group. Theories with symmetries given by these subgroups are known to preserve the constancy of the speed of
light, this fact being referred as Very Special Relativity. It is shown that there are nitedimensional reducible representations of HOM(2) and SIM(2) that are not completely
reducible, and thus cannot be obtained entirely from irreducible representations. These
are obtained directly from the representations of the Lie algebras hom(2) and sim(2),
using the knowledge of the universal covering groups of HOM(2) and SIM(2), which are
also presented in the text / Mestrado / Física / Mestre em Física
|
Page generated in 0.0269 seconds