• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à l'analyse statique de programmes manipulant des tableaux

Péron, Mathias 22 September 2010 (has links) (PDF)
Si l'analyse automatique des accès aux tableaux a été largement étudiée, on trouve très peu de résultats convaincants sur l'analyse du contenu des tableaux. Pour une telle analyse, les analyses numériques sont centrales. Notamment, si l'on découvre l'invariant i ≠ j, on évite d'affaiblir la connaissance sur a[j] lors d'une affectation à a[i]. Nous proposons une nouvelle analyse numérique faiblement relationnelle, combinant des contraintes de zones (x - y ≤ c ou ±x ≤ c) à des contraintes de non-égalités (x ≠ y ou x ≠ 0). Cette analyse a une complexité en O(n4), si les variables prennent leur valeurs dans un ensemble dense. Dans le cas arithmétique, décider de la satisfaisabilité d'une conjonction de telles contraintes est un problème NP-complet. Nous proposons une analyse en O(n4) également pour ce cas. Au cœur des analyses du contenu des tableaux on trouve aussi des analyses de partitionnement symbolique. Pour une boucle " for i = 1 to n ", où un tableau est accédé à la cellule i, il est nécessaire de considérer le contenu des tableaux sur les tranches [1, i - 1], [i, i] et [i + 1, n] pour être précis. Nous définissons une analyse de partitionnement sémantique, puis une analyse du contenu des tableaux basée sur ses résultats. Cette dernière associe à chaque tranche φ une propriété ψ dont les variables représentent le contenu des tableaux sur cette tranche. La propriété ψ est interprétée cellule-par-cellule, ainsi pour φ = [1, i - 1] et ψ = (a = b + 1) il est exprimé que ∀ k ∈ [1, i - 1], a[k] = b[k] + 1. Les résultats expérimentaux montrent que notre analyse automatique est efficace et précise, sur une classe de programmes simples : tableaux unidimensionnels, indexés par une variable au plus (x + c ou c), traversés par des boucles, imbriquées ou non, avec des compteurs suivant une progression arithmétique. Elle découvre par exemple que le résultat d'un tri par insertion est un tableau trié, ou que durant le parcours d'un tableau gardé par une "sentinelle", tous les accès à ce tableau sont corrects.
2

Egalités-Inégalités: le placement des filles dans le système de protection de la jeunesse

Dedecker, Renée 01 January 1986 (has links)
Pas de résumé / Doctorat en criminologie / info:eu-repo/semantics/nonPublished
3

Une étude des sommes fortes : isomorphismes et formes normales

Balat, Vincent 05 December 2002 (has links) (PDF)
Le but de cette thèse est d'étudier la somme et le zéro dans deux principaux cadres : les isomorphismes de types et la normalisation de lambda-termes. Les isomorphismes de type avaient déjà été étudiés dans le cadre du lambda-calcul simplement typé avec paires surjectives mais sans somme. Pour aborder le cas avec somme et zéro, j'ai commencé par restreindre l'étude au cas des isomorphismes linéaires, dans le cadre de la logique linéaire, ce qui a conduit à une caractérisation remarquablement simple de ces isomorphismes, obtenue grâce à une méthode syntaxique sur les réseaux de preuve. Le cadre plus général de la logique intuitionniste correspond au problème ouvert de la caractérisation des isomorphismes dans les catégories bi-cartésiennes fermées. J'ai pu apporter une contribution à cette étude en montrant qu'il n'y a pas d'axiomatisation finie de ces isomorphismes. Pour cela, j'ai tiré partie de travaux en théorie des nombres portant sur un problème énoncé par Alfred Tarski et connu sous le nom du « problème des égalités du lycée ». Pendant tout ce travail sur les isomorphismes de types, s'est posé le problème de trouver une forme canonique pour représenter les lambda-termes, que ce soit dans le but de nier l'existence d'un isomorphisme par une étude de cas sur la forme du terme, ou pour vérifier leur existence dans le cas des fonctions très complexes que j'étais amené à manipuler. Cette réflexion a abouti à poser une définition « extensionnelle » de forme normale pour le lambda-calcul avec somme et zéro, obtenue par des méthodes catégoriques grâce aux relations logiques de Grothendieck, apportant ainsi une nouvelle avancée dans l'étude de la question réputée difficile de la normalisation de ce lambda-calcul. Enfin je montrerai comment il est possible d'obtenir une version « intentionnelle » de ce résultat en utilisant la normalisation par évaluation. J'ai pu ainsi donner une adaptation de la technique d' évaluation partielle dirigée par les types pour qu'elle produise un résultat dans cette forme normale, ce qui en réduit considérablement la taille et diminue aussi beaucoup le temps de normalisation dans le cas des isomorphismes de types considérés auparavant.

Page generated in 0.3226 seconds