• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 19
  • 7
  • Tagged with
  • 63
  • 41
  • 27
  • 21
  • 21
  • 19
  • 18
  • 17
  • 17
  • 17
  • 16
  • 15
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Applications de la force de Lorentz en acoustique médicale / Applications of Lorentz force in medical acoustics

Grasland-Mongrain, Pol 12 December 2013 (has links)
La capacité de la force de Lorentz à relier un déplacement mécanique à un courant électrique présente un intérêt certain pour l'acoustique médicale, et trois applications ont été étudiées dans cette thèse. Dans la première partie de ce travail, un hydrophone a été développé pour effectuer des champs de vitesse acoustique. Cet hydrophone était constitué d'un fil de cuivre vibrant dans un champ magnétique. Un modèle a été élaboré pour déterminer une relation entre la pression acoustique et le courant électrique mesure, qui est induit par force de Lorentz lorsque le fil vibre dans un champ acoustique. Un prototype a ensuite été conçu et sa résolution spatiale, sa réponse fréquentielle, sa sensibilité, sa résistance et sa réponse directionnelle ont été examinées. Une méthode d'imagerie appelée Tomographie d'Impedance Electrique par Force de Lorentz a aussi été étudiée. Dans cette méthode, un tissu biologique est déplacé par ultrasons dans un champ magnétique, ce qui induit un courant électrique par force de Lorentz. L'impédance électrique du tissu peut ensuite être déduite de la mesure du courant. Cette technique a été appliquée pour réaliser des images d'un fantôme de gélatine, d'un muscle de bœuf, et d'une lésion thermique dans un échantillon de poulet. Cela a montré que la méthode est potentiellement utile pour fournir un contraste supplémentaire à des images ultrasonores classiques. Enfin, cette thèse a démontré que des ondes de cisaillement peuvent être générées dans des tissus mous par force de Lorentz. Cela a été réalisé en appliquant un courant électrique par deux électrodes dans un solide mou place dans un champ magnétique. Des ondes de cisaillement ont été observées dans des échantillons de gélatine et de foie. La vitesse des ondes de cisaillement a été utilisée pour calculer l'élasticité et leur source pour cartographier la conductivité électrique des échantillons / The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical impedance of the tissue can be deduced from the measurement of the current. This technique was applied for imaging a gelatin phantom, a beef muscle sample, and a thermal lesion in a chicken breast sample. This showed the method may be useful for providing additional contrast to conventional ultrasound imaging. Finally, this thesis demonstrated that shear waves can be generated in soft tissues using Lorentz force. This work was performed by applying an electrical current with two electrodes in a soft solid placed in a magnetic field. Shear waves were observed in gelatin phantom and liver sample. The speed of the shear waves were used to compute elasticity and their source to map the electrical conductivity of the samples
62

Characterization of carotid artery plaques using noninvasive vascular ultrasound elastography

Li, Hongliang 09 1900 (has links)
L'athérosclérose est une maladie vasculaire complexe qui affecte la paroi des artères (par l'épaississement) et les lumières (par la formation de plaques). La rupture d'une plaque de l'artère carotide peut également provoquer un accident vasculaire cérébral ischémique et des complications. Bien que plusieurs modalités d'imagerie médicale soient actuellement utilisées pour évaluer la stabilité d'une plaque, elles présentent des limitations telles que l'irradiation, les propriétés invasives, une faible disponibilité clinique et un coût élevé. L'échographie est une méthode d'imagerie sûre qui permet une analyse en temps réel pour l'évaluation des tissus biologiques. Il est intéressant et prometteur d’appliquer une échographie vasculaire pour le dépistage et le diagnostic précoces des plaques d’artère carotide. Cependant, les ultrasons vasculaires actuels identifient uniquement la morphologie d'une plaque en termes de luminosité d'écho ou l’impact de cette plaque sur les caractéristiques de l’écoulement sanguin, ce qui peut ne pas être suffisant pour diagnostiquer l’importance de la plaque. La technique d’élastographie vasculaire non-intrusive (« noninvasive vascular elastography (NIVE) ») a montré le potentiel de détermination de la stabilité d'une plaque. NIVE peut déterminer le champ de déformation de la paroi vasculaire en mouvement d’une artère carotide provoqué par la pulsation cardiaque naturelle. En raison des différences de module de Young entre les différents tissus des vaisseaux, différents composants d’une plaque devraient présenter différentes déformations, caractérisant ainsi la stabilité de la plaque. Actuellement, les performances et l’efficacité numérique sous-optimales limitent l’acceptation clinique de NIVE en tant que méthode rapide et efficace pour le diagnostic précoce des plaques vulnérables. Par conséquent, il est nécessaire de développer NIVE en tant qu’outil d’imagerie non invasif, rapide et économique afin de mieux caractériser la vulnérabilité liée à la plaque. La procédure à suivre pour effectuer l’analyse NIVE consiste en des étapes de formation et de post-traitement d’images. Cette thèse vise à améliorer systématiquement la précision de ces deux aspects de NIVE afin de faciliter la prédiction de la vulnérabilité de la plaque carotidienne. Le premier effort de cette thèse a été dédié à la formation d'images (Chapitre 5). L'imagerie par oscillations transversales a été introduite dans NIVE. Les performances de l’imagerie par oscillations transversales couplées à deux estimateurs de contrainte fondés sur un modèle de déformation fine, soit l’ « affine phase-based estimator (APBE) » et le « Lagrangian speckle model estimator (LSME) », ont été évaluées. Pour toutes les études de simulation et in vitro de ce travail, le LSME sans imagerie par oscillation transversale a surperformé par rapport à l'APBE avec imagerie par oscillations transversales. Néanmoins, des estimations de contrainte principales comparables ou meilleures pourraient être obtenues avec le LSME en utilisant une imagerie par oscillations transversales dans le cas de structures tissulaires complexes et hétérogènes. Lors de l'acquisition de signaux ultrasonores pour la formation d'images, des mouvements hors du plan perpendiculaire au plan de balayage bidimensionnel (2-D) existent. Le deuxième objectif de cette thèse était d'évaluer l'influence des mouvements hors plan sur les performances du NIVE 2-D (Chapitre 6). À cette fin, nous avons conçu un dispositif expérimental in vitro permettant de simuler des mouvements hors plan de 1 mm, 2 mm et 3 mm. Les résultats in vitro ont montré plus d'artefacts d'estimation de contrainte pour le LSME avec des amplitudes croissantes de mouvements hors du plan principal de l’image. Malgré tout, nous avons néanmoins obtenu des estimations de déformations robustes avec un mouvement hors plan de 2.0 mm (coefficients de corrélation supérieurs à 0.85). Pour un jeu de données cliniques de 18 participants présentant une sténose de l'artère carotide, nous avons proposé d'utiliser deux jeux de données d'analyses sur la même plaque carotidienne, soit des images transversales et longitudinales, afin de déduire les mouvements hors plan (qui se sont avérés de 0.25 mm à 1.04 mm). Les résultats cliniques ont montré que les estimations de déformations restaient reproductibles pour toutes les amplitudes de mouvement, puisque les coefficients de corrélation inter-images étaient supérieurs à 0.70 et que les corrélations croisées normalisées entre les images radiofréquences étaient supérieures à 0.93, ce qui a permis de démontrer une plus grande confiance lors de l'analyse de jeu de données cliniques de plaques carotides à l'aide du LSME. Enfin, en ce qui concerne le post-traitement des images, les algorithmes NIVE doivent estimer les déformations des parois des vaisseaux à partir d’images reconstituées dans le but d’identifier les tissus mous et durs. Ainsi, le dernier objectif de cette thèse était de développer un algorithme d'estimation de contrainte avec une résolution de la taille d’un pixel ainsi qu'une efficacité de calcul élevée pour l'amélioration de la précision de NIVE (Chapitre 7). Nous avons proposé un estimateur de déformation de modèle fragmenté (SMSE) avec lequel le champ de déformation dense est paramétré avec des descriptions de transformées en cosinus discret, générant ainsi des composantes de déformations affines (déformations axiales et latérales et en cisaillement) sans opération mathématique de dérivées. En comparant avec le LSME, le SMSE a réduit les erreurs d'estimation lors des tests de simulations, ainsi que pour les mesures in vitro et in vivo. De plus, la faible mise en oeuvre de la méthode SMSE réduit de 4 à 25 fois le temps de traitement par rapport à la méthode LSME pour les simulations, les études in vitro et in vivo, ce qui pourrait permettre une implémentation possible de NIVE en temps réel. / Atherosclerosis is a complex vascular disease that affects artery walls (by thickening) and lumens (by plaque formation). The rupture of a carotid artery plaque may also induce ischemic stroke and complications. Despite the use of several medical imaging modalities to evaluate the stability of a plaque, they present limitations such as irradiation, invasive property, low clinical availability and high cost. Ultrasound is a safe imaging method with a real time capability for assessment of biological tissues. It is clinically used for early screening and diagnosis of carotid artery plaques. However, current vascular ultrasound technologies only identify the morphology of a plaque in terms of echo brightness or the impact of the vessel narrowing on flow properties, which may not be sufficient for optimum diagnosis. Noninvasive vascular elastography (NIVE) has been shown of interest for determining the stability of a plaque. Specifically, NIVE can determine the strain field of the moving vessel wall of a carotid artery caused by the natural cardiac pulsation. Due to Young’s modulus differences among different vessel tissues, different components of a plaque can be detected as they present different strains thereby potentially helping in characterizing the plaque stability. Currently, sub-optimum performance and computational efficiency limit the clinical acceptance of NIVE as a fast and efficient method for the early diagnosis of vulnerable plaques. Therefore, there is a need to further develop NIVE as a non-invasive, fast and low computational cost imaging tool to better characterize the plaque vulnerability. The procedure to perform NIVE analysis consists in image formation and image post-processing steps. This thesis aimed to systematically improve the accuracy of these two aspects of NIVE to facilitate predicting carotid plaque vulnerability. The first effort of this thesis has been targeted on improving the image formation (Chapter 5). Transverse oscillation beamforming was introduced into NIVE. The performance of transverse oscillation imaging coupled with two model-based strain estimators, the affine phase-based estimator (APBE) and the Lagrangian speckle model estimator (LSME), were evaluated. For all simulations and in vitro studies, the LSME without transverse oscillation imaging outperformed the APBE with transverse oscillation imaging. Nonetheless, comparable or better principal strain estimates could be obtained with the LSME using transverse oscillation imaging in the case of complex and heterogeneous tissue structures. During the acquisition of ultrasound signals for image formation, out-of-plane motions which are perpendicular to the two-dimensional (2-D) scan plane are existing. The second objective of this thesis was to evaluate the influence of out-of-plane motions on the performance of 2-D NIVE (Chapter 6). For this purpose, we designed an in vitro experimental setup to simulate out-of-plane motions of 1 mm, 2 mm and 3 mm. The in vitro results showed more strain estimation artifacts for the LSME with increasing magnitudes of out-of-plane motions. Even so, robust strain estimations were nevertheless obtained with 2.0 mm out-of-plane motion (correlation coefficients higher than 0.85). For a clinical dataset of 18 participants with carotid artery stenosis, we proposed to use two datasets of scans on the same carotid plaque, one cross-sectional and the other in a longitudinal view, to deduce the out-of-plane motions (estimated to be ranging from 0.25 mm to 1.04 mm). Clinical results showed that strain estimations remained reproducible for all motion magnitudes since inter-frame correlation coefficients were higher than 0.70, and normalized cross-correlations between radiofrequency images were above 0.93, which indicated that confident motion estimations can be obtained when analyzing clinical dataset of carotid plaques using the LSME. Finally, regarding the image post-processing component of NIVE algorithms to estimate strains of vessel walls from reconstructed images with the objective of identifying soft and hard tissues, we developed a strain estimation method with a pixel-wise resolution as well as a high computation efficiency for improving NIVE (Chapter 7). We proposed a sparse model strain estimator (SMSE) for which the dense strain field is parameterized with Discrete Cosine Transform descriptions, thereby deriving affine strain components (axial and lateral strains and shears) without mathematical derivative operations. Compared with the LSME, the SMSE reduced estimation errors in simulations, in vitro and in vivo tests. Moreover, the sparse implementation of the SMSE reduced the processing time by a factor of 4 to 25 compared with the LSME based on simulations, in vitro and in vivo results, which is suggesting a possible implementation of NIVE in real time.
63

Ultrasound shear wave imaging for diagnosis of nonalcoholic fatty liver disease

Yazdani, Ladan 04 1900 (has links)
Pour le diagnostic et la stratification de la fibrose hépatique, la rigidité du foie est un biomarqueur quantitatif estimé par des méthodes d'élastographie. L'élastographie par ondes de cisaillement (« shear wave », SW) utilise des ultrasons médicaux non invasifs pour évaluer les propriétés mécaniques du foie sur la base des propriétés de propagation des ondes de cisaillement. La vitesse des ondes de cisaillement (« shear wave speed », SWS) et l'atténuation des ondes de cisaillement (« shear wave attenuation », SWA) peuvent fournir une estimation de la viscoélasticité des tissus. Les tissus biologiques sont intrinsèquement viscoélastiques et un modèle mathématique complexe est généralement nécessaire pour calculer la viscoélasticité en imagerie SW. Le calcul précis de l'atténuation est essentiel, en particulier pour une estimation précise du module de perte et de la viscosité. Des études récentes ont tenté d'augmenter la précision de l'estimation du SWA, mais elles présentent encore certaines limites. Comme premier objectif de cette thèse, une méthode de décalage de fréquence revisitée a été développée pour améliorer les estimations fournies par la méthode originale de décalage en fréquence [Bernard et al 2017]. Dans la nouvelle méthode, l'hypothèse d'un paramètre de forme décrivant les caractéristiques spectrales des ondes de cisaillement, et assumé initialement constant pour tous les emplacements latéraux, a été abandonnée permettant un meilleur ajustement de la fonction gamma du spectre d'amplitude. En second lieu, un algorithme de consensus d'échantillons aléatoires adaptatifs (« adaptive random sample consensus », A-RANSAC) a été mis en œuvre pour estimer la pente du paramètre de taux variable de la distribution gamma afin d’améliorer la précision de la méthode. Pour valider ces changements algorithmiques, la méthode proposée a été comparée à trois méthodes récentes permettant d’estimer également l’atténuation des ondes de cisaillements (méthodes de décalage en fréquence, de décalage en fréquence en deux points et une méthode ayant comme acronyme anglophone AMUSE) à l'aide de données de simulations ou fantômes numériques. Également, des fantômes de gels homogènes in vitro et des données in vivo acquises sur le foie de canards ont été traités. Comme deuxième objectif, cette thèse porte également sur le diagnostic précoce de la stéatose hépatique non alcoolique (NAFLD) qui est nécessaire pour prévenir sa progression et réduire la mortalité globale. À cet effet, la méthode de décalage en fréquence revisitée a été testée sur des foies humains in vivo. La performance diagnostique de la nouvelle méthode a été étudiée sur des foies humains sains et atteints de la maladie du foie gras non alcoolique. Pour minimiser les sources de variabilité, une méthode d'analyse automatisée faisant la moyenne des mesures prises sous plusieurs angles a été mise au point. Les résultats de cette méthode ont été comparés à la fraction de graisse à densité de protons obtenue de l'imagerie par résonance magnétique (« magnetic resonance imaging proton density fat fraction », MRI-PDFF) et à la biopsie du foie. En outre, l’imagerie SWA a été utilisée pour classer la stéatose et des seuils de décision ont été établis pour la dichotomisation des différents grades de stéatose. Finalement, le dernier objectif de la thèse consiste en une étude de reproductibilité de six paramètres basés sur la technologie SW (vitesse, atténuation, dispersion, module de Young, viscosité et module de cisaillement). Cette étude a été réalisée chez des volontaires sains et des patients atteints de NAFLD à partir de données acquises lors de deux visites distinctes. En conclusion, une méthode robuste de calcul du SWA du foie a été développée et validée pour fournir une méthode de diagnostic de la NAFLD. / For diagnosis and staging of liver fibrosis, liver stiffness is a quantitative biomarker estimated by elastography methods. Ultrasound shear wave (SW) elastography utilizes noninvasive medical ultrasound to assess the mechanical properties of the liver based on the monitoring of the SW propagation. SW speed (SWS) and SW attenuation (SWA) can provide an estimation of tissue viscoelasticity. Biological tissues are inherently viscoelastic in nature and a complex mathematical model is usually required to compute viscoelasticity in SW imaging. Accurate computation of attenuation is critical, especially for accurate loss modulus and viscosity estimation. Recent studies have made attempts to increase the precision of SWA estimation, but they still face some limitations. As a first objective of this thesis, a revisited frequency-shift method was developed to improve the estimates provided by the original implementation of the frequency-shift method [Bernard et al 2017]. In the new method, the assumption of a constant shape parameter of the gamma function describing the SW magnitude spectrum has been dropped for all lateral locations, allowing a better gamma fitting. Secondly, an adaptive random sample consensus algorithm (A-RANSAC) was implemented to estimate the slope of the varying rate parameter of the gamma distribution to improve the accuracy of the method. For the validation of these algorithmic changes, the proposed method was compared with three recent methods proposed to estimate SWA (frequency-shift, two-point frequency-shift and AMUSE methods) using simulation data or numerical phantoms. In addition, in vitro homogenous gel phantoms and in vivo animal (duck) liver data were processed. As a second objective, this thesis also aimed at improving the early diagnosis of nonalcoholic fatty liver disease (NAFLD), which is necessary to prevent its progression and decrease the overall mortality. For this purpose, the revisited frequency-shift method was tested on in vivo human livers. The new method's diagnosis performance was investigated with healthy and NAFLD human livers. To minimize sources of variability, an automated analysis method averaging measurements from several angles has been developed. The results of this method were compared to the magnetic resonance imaging proton density fat fraction (MRI-PDFF) and to liver biopsy. SWA imaging was used for grading steatosis and cut-off decision thresholds were established for dichotomization of different steatosis grades. As a third objective, this thesis is proposing a reproducibility study of six SW-based parameters (speed, attenuation, dispersion, Young’s modulus, viscosity and shear modulus). The assessment was performed in healthy volunteers and NAFLD patients using data acquired at two separate visits. In conclusion, a robust method for computing the liver’s SWA was developed and validated to provide a diagnostic method for NAFLD.

Page generated in 0.0669 seconds