• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Study on Blind Phase Estimation

Wang, Po-hsuan 16 August 2011 (has links)
In this thesis, the blind phase estimator algorithms are studied, including Histogram Algorithm (HA), Modified Histogram Algorithm (MHA), Maximum Likelihood (ML), 4th power-law and modified 4th power-law to compare their performance under quadrature amplitude modulation and additive white gaussian noise(AWGN) channel. Owing to the development of wireless communication, I used the fading channel of wireless communication and studied the performance of all algorithms again. After differential encoding and quadrature amplitude modulation, signals enter additive white gaussian noise(AWGN), constant phase offset and fading channel. At receiver, I use the above estimator to find the phase offset. If there is not line of sight under fading channel, all estimators performance are not good from simulation results, if there is a strong line of sight, all estimators performance are good and approximate to the AWGN channel.
2

Application of digital signal processing methods to very high frequency omnidirectional range (VOR) signals in the design of an airborne flight measurement system

Tye, Thomas N. January 1996 (has links)
No description available.
3

Compensação eletrônica de degradações ópticas em receptores coerentes : contribuições ao sincronismo de portadora, equalização e simulação / Electronic compensation of optical degradations in coherent receivers : contributions to carrier synchronization, equalization and simulation

Garcia, Fábio Lumertz, 1979- 24 August 2018 (has links)
Orientadores: Dalton Soares Arantes, Fabbryccio Akkazzha Chaves Machado Cardoso / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-24T01:49:02Z (GMT). No. of bitstreams: 1 Garcia_FabioLumertz_D.pdf: 40460342 bytes, checksum: 576d63ee41c2ab7aa3312f22902103b5 (MD5) Previous issue date: 2013 / Resumo: Esta tese apresenta um novo método para recuperação de portadora e fase, sem o emprego de Phase-Locked Loops, com aplicação em um sistema óptico coerente com modulação 16-QAM, taxa de 112Gb/s e multiplexação por polarização. A estrutura desenvolvida viabiliza uma Operação de Alinhamento dos símbolos modulados em fase e quadratura da constelação QAM, possibilitando a estimação eficiente dos desvios de freqüência e fase. Um projeto especial de preâmbulo foi concebido para o uso desta estrutura, possibilitando uma comutação suave para o segmento de dados com o auxílio de um esquema denominado Conjugado Virtual. Esses conceitos possibilitam correção de desvios de freqüência superiores a 1,5 GHz e operação com faixas de ruído de fase da ordem de 3,5 MHz (' DELTA' v × TS = 2.5 × 10?4), quando operando na taxa de 14 GBaud e em ambientes bastante degradados. Resultados de simulação apontam que nesses cenários degradados a equalização não-fracionária não é capaz de realizar a inversão do canal óptico. Essa conclusão é particularmente ilustrada por uma imagem bidimensional relacionando as taxas de erro de bit (BERs) em função de pares de amostras. Finalmente, o sistema óptico foi emulado com o software VPI Photonics. / Abstract: This thesis presents a novel method for Carrier Phase Estimation (CPE), without Phase-Locked Loops, with application to a 112 Gb/s Dual-Polarization 16-QAM Coherent Optical System. The developed structure allows for an Alignment Operation that performs the alignment of the symbols of the QAM constellation, resulting in more efficient estimation of carrier frequency and phase. An especial preamble design was conceived for this structure, enabling a soft switching from preamble to data segment using an especial Virtual Conjugation scheme. These concepts enable frequency mismatch correction over to 1.5 GHz and operation with phase noise linewidth in the order of 3.5 MHz (' DELTA' v × TS = 2.5 × 10?4), when operating at the rate of 14 GBaud and highly degraded channel conditions. Simulation results show that, in these scenarios, baudrate equalization is not able to perform channel inversion. This conclusion is especially illustrated by a bidimensional image which depicts Bit Error Rates (BERs) as a function of pairs of samples. Finally, the optical system was emulated using VPI Photonics Simulation Software. / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
4

Synchronization for Burst-Mode APSK

Shaw, Christopher 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / We derive bounds on the performance of data-aided joint estimators for timing offset, carrier phase offset, and carrier frequency offset for use in an APSK packet-based communication link. It is shown that the Cramér-Rao Bound (CRB) is a function of the training sequence, the signal-to-noise ratio (SNR), and the pulse shape. We also compute APSK training sequences of different lengths that minimize the CRB for each of the parameters.
5

Topics in estimation of quantum channels

O'Loan, Caleb J. January 2010 (has links)
A quantum channel is a mapping which sends density matrices to density matrices. The estimation of quantum channels is of great importance to the field of quantum information. In this thesis two topics related to estimation of quantum channels are investigated. The first of these is the upper bound of Sarovar and Milburn (2006) on the Fisher information obtainable by measuring the output of a channel. Two questions raised by Sarovar and Milburn about their bound are answered. A Riemannian metric on the space of quantum states is introduced, related to the construction of the Sarovar and Milburn bound. Its properties are characterized. The second topic investigated is the estimation of unitary channels. The situation is considered in which an experimenter has several non-identical unitary channels that have the same parameter. It is shown that it is possible to improve estimation using the channels together, analogous to the case of identical unitary channels. Also, a new method of phase estimation is given based on a method sketched by Kitaev (1996). Unlike other phase estimation procedures which perform similarly, this procedure requires only very basic experimental resources.
6

DSP based Chromatic Dispersion Equalization and Carrier Phase Estimation in High Speed Coherent Optical Transmission Systems

Xu, Tianhua January 2012 (has links)
Coherent detection employing multilevel modulation formats has become one of the most promising technologies for next generation high speed transmission systems due to the high power and spectral efficiencies. Using the powerful digital signal processing (DSP), coherent optical receivers allow the significant equalization of chromatic dispersion (CD), polarization mode dispersion (PMD), phase noise (PN) and nonlinear effects in the electrical domain. Recently, the realizations of these DSP algorithms for mitigating the channel distortions in the coherent transmission systems are the most attractive investigations. The CD equalization can be performed by the digital filters developed in the time and the frequency domain, which can suppress the fiber dispersion effectively. The PMD compensation is usually performed in the time domain with the adaptive least mean square (LMS) and constant modulus algorithms (CMA) equalization. Feed-forward and feed-back carrier phase estimation (CPE) algorithms are employed to mitigate the phase noise (PN) from the transmitter (TX) and the local oscillator (LO) lasers. The fiber nonlinearities are compensated by using the digital backward propagation methods based on solving the nonlinear Schrödinger (NLS) equation and the Manakov equation. In this dissertation, we present a comparative analysis of three digital filters for chromatic dispersion compensation, a comparative evaluation of different carrier phase estimation methods considering digital equalization enhanced phase noise (EEPN) and a brief discussion for PMD adaptive equalization. To implement these investigations, a 112-Gbit/s non-return-to-zero polarization division multiplexed quadrature phase shift keying (NRZ-PDM-QPSK) coherent transmission system with post-compensation of dispersion is realized in the VPI simulation platform. In the coherent transmission system, these CD equalizers have been compared by evaluating their applicability for different fiber lengths, their usability for dispersion perturbations and their computational complexity. The carrier phase estimation using the one-tap normalized LMS (NLMS) filter, the differential detection, the block-average (BA) algorithm and the Viterbi-Viterbi (VV) algorithm is evaluated, and the analytical predictions are compared to the numerical simulations. Meanwhile, the phase noise mitigation using the radio frequency (RF) pilot tone is also investigated in a 56-Gbit/s NRZ single polarization QPSK (NRZ-SP-QPSK) coherent transmission system with post-compensation of chromatic dispersion. Besides, a 56-Gbit/s NRZ-SP-QPSK coherent transmission system with CD pre-distortion is also implemented to analyze the influence of equalization enhanced phase noise in more detail. / QC 20120528
7

GPU Based Digital Coherent Receiver for Optical transmission system

Hsiao, Hsiang-Hung 18 July 2012 (has links)
The coherent optical fiber communication technology is attracting significant attentions in the world, because it can realize the spectrally efficient transmission system. One major difference between 1980¡¦s and the latest coherent technology is the utilization of the digital signal processing (DSP). In 1980¡¦s the optical phase locked loop (OPLL) was required to realize the homodyne detection, and it was significantly difficult to realize. The latest coherent technology utilizes the DSP in place of the OPLL to realize the homodyne detection, and it is much easier than the OPLL. The real-time realization of the DSP is still a problem. Because the DSP uses software to process the signal, it needs an extreme calculation power for the high-speed communication system. People always utilize the field programmable gate array (FPGA) to realize the real-time DSP, but the cost of the FPGA is too expensive for the commercial system at this moment. This master thesis intend to utilize commercially available personal computer (PC) contained a GPU calculation board to replace FPGA. It can reduce the cost of the coherent receiver. Also, this receiver is defined by the software rather than the hardware. It means that we can realize a flexible receiver defined by the software.
8

Musical instrument sound source separation

Gunawan, David Oon Tao, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
The structured arrangement of sounds in musical pieces, results in the unique creation of complex acoustic mixtures. The analysis of these mixtures, with the objective of estimating the individual sounds which constitute them, is known as musical instrument sound source separation, and has applications in audio coding, audio restoration, music production, music information retrieval and music education. This thesis principally addresses the issues related to the separation of harmonic musical instrument sound sources in single-channel mixtures. The contributions presented in this work include novel separation methods which exploit the characteristic structure and inherent correlations of pitched sound sources; as well as an exploration of the musical timbre space, for the development of an objective distortion metric to evaluate the perceptual quality of separated sources. The separation methods presented in this work address the concordant nature of musical mixtures using a model-based paradigm. Model parameters are estimated for each source, beginning with a novel, computationally efficient algorithm for the refinement of frequency estimates of the detected harmonics. Harmonic tracks are formed, and overlapping components are resolved by exploiting spectro-temporal intra-instrument dependencies, integrating the spectral and temporal approaches which are currently employed in a mutually exclusive manner in existing systems. Subsequent to the harmonic magnitude extraction using this method, a unique, closed-loop approach to source synthesis is presented, separating sources by iteratively minimizing the aggregate error of the sources, constraining the minimization to a set of estimated parameters. The proposed methods are evaluated independently, and then are placed within the context of a source separation system, which is evaluated using objective and subjective measures. The evaluation of music source separation systems is presently limited by the simplicity of objective measures, and the extensive effort required to conduct subjective evaluations. To contribute to the development of perceptually relevant evaluations, three psychoacoustic experiments are also presented, exploring the perceptual sensitivity of timbre for the development of an objective distortion metric for timbre. The experiments investigate spectral envelope sensitivity, spectral envelope morphing and noise sensitivity.
9

Musical instrument sound source separation

Gunawan, David Oon Tao, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
The structured arrangement of sounds in musical pieces, results in the unique creation of complex acoustic mixtures. The analysis of these mixtures, with the objective of estimating the individual sounds which constitute them, is known as musical instrument sound source separation, and has applications in audio coding, audio restoration, music production, music information retrieval and music education. This thesis principally addresses the issues related to the separation of harmonic musical instrument sound sources in single-channel mixtures. The contributions presented in this work include novel separation methods which exploit the characteristic structure and inherent correlations of pitched sound sources; as well as an exploration of the musical timbre space, for the development of an objective distortion metric to evaluate the perceptual quality of separated sources. The separation methods presented in this work address the concordant nature of musical mixtures using a model-based paradigm. Model parameters are estimated for each source, beginning with a novel, computationally efficient algorithm for the refinement of frequency estimates of the detected harmonics. Harmonic tracks are formed, and overlapping components are resolved by exploiting spectro-temporal intra-instrument dependencies, integrating the spectral and temporal approaches which are currently employed in a mutually exclusive manner in existing systems. Subsequent to the harmonic magnitude extraction using this method, a unique, closed-loop approach to source synthesis is presented, separating sources by iteratively minimizing the aggregate error of the sources, constraining the minimization to a set of estimated parameters. The proposed methods are evaluated independently, and then are placed within the context of a source separation system, which is evaluated using objective and subjective measures. The evaluation of music source separation systems is presently limited by the simplicity of objective measures, and the extensive effort required to conduct subjective evaluations. To contribute to the development of perceptually relevant evaluations, three psychoacoustic experiments are also presented, exploring the perceptual sensitivity of timbre for the development of an objective distortion metric for timbre. The experiments investigate spectral envelope sensitivity, spectral envelope morphing and noise sensitivity.
10

Reconstruction de phase pour la microscopie à Contraste Interférentiel Différentiel / Phase estimation for Differential Interference Contrast microscopy

Bautista Rozo, Lola Xiomara 30 June 2017 (has links)
Dans cette thèse, nous nous intéressons à la microscopie DIC (Differential interference contrast) en couleur. L’imagerie DIC est reconnue pour produire des images à haut contraste et à haute résolution latérale. L'un de ses inconvénients est que les images observées ne peuvent pas être utilisées directement pour l'interprétation topographique et morphologique, car les changements de phase de la lumière, produits par les variations de l'indice de réfraction de l'objet, sont cachés dans l'image d'intensité. Il s’agit donc d’un problème de reconstruction de phase. Nous présentons un modèle de formation d'image pour la lumière polychromatique, et décrivons de manière détaillée la réponse impulsionnelle du système. Le problème de la reconstruction de phase est abordé sous l’angle d’un problème inverse par minimisation d’un terme d’erreur des moindres carrés (LS) non linéaire avec un terme de régularisation préservant les discontinuités, soit par le potentiel hypersurface (HS), soit par la variation totale (TV). Nous étudions les propriétés des fonctions objectives non convexes résultantes, prouvons l'existence de minimisateurs et proposons une formulation compacte du gradient permettant un calcul rapide. Ensuite, nous proposons des outils d'optimisation efficaces récents permettant d'obtenir à la fois des reconstructions précises pour les deux régularisations lisse (HS) et non lisse (TV) et des temps de calculs réduits. / In this dissertation we address the problem of estimating the phase from colorimages acquired with differential–interference–contrast (DIC) microscopy. This technique has been widely recognized for producing high contrast images at high lateral resolution. One of its disadvant ages is that the observed images cannot be easily used for topographical and morphological interpretation, because the changes in phase of the light, produced by variations in the refractive index of the object, are hidden in the intensity image. We present an image formation model for polychromatic light, along with a detailed description of the point spread function (PSF). As for the phase recovery problem, we followed the inverse problem approach by means of minimizing a non-linear least–squares (LS)–like discrepancy term with an edge–preserving regularizing term, given by either the hypersurface (HS) potential or the total variation (TV) one. We investigate the analytical properties of the resulting objective non-convex functions, prove the existence of minimizers and propose a compact formulation of the gradient allowing fast computations. Then we use recent effective optimization tools able to obtain in both the smooth and the non-smooth cases accurate reconstructions with a reduced computational demand. We performed different numerical tests on synthetic realistic images and we compared the proposed methods with both the original conjugate gradient method proposed in the literature, exploiting a gradient–free linesearch for the computation of the steplength parameter, and other standard conjugate gradient approaches.

Page generated in 0.1566 seconds