• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 1
  • Tagged with
  • 11
  • 11
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d’une méthode électrochimique pour l’imitation du métabolisme de composés pharmaceutiques modèles

Lecours, Marc-André January 2017 (has links)
L’électrochimie (EC) couplée à la spectrométrie de masse (MS) tend à devenir une technique de choix lors de l’étude et la prédiction des métabolites de différents types de substances. La possibilité de reproduire artificiellement par de l’instrumentation les étapes d’oxydation du métabolisme de médicaments est une des avenues intéressantes pour l’étude du devenir des contaminants émergents présents dans l’environnement. Le projet suivant vise à augmenter les connaissances sur les produits de transformation des composés émergents susceptibles d’être retrouvés dans l’environnement et sur les transformations électrochimiques de médicaments modèles. Une approche électrochimique avec potentiel contrôlé pour l’étude des produits de transformation de différents médicaments suivis d’une analyse par UPLC-QTOF-MS est présentée.
2

Electrochemical processes as a pre-treatment step before biological treatment : Application to the removal of organo-halogenated compounds / Procédés électrochimiques en tant qu'étape de prétraitement préalablement à un traitement biologique : Application à l'élimination des composés organohalogénés

Lou, Yaoyin 07 October 2019 (has links)
Le couplage d’un traitement électrochimique avec un procédé biologique est une alternative prometteuse pour la dégradation de composés organo-halogénés biorécalcitrants dans l’environnement. Les procédés d’électroréduction, connus pour couper sélectivement la liaison carbone-halogène, ont été mis en oeuvre afin de réduire la toxicité des molécules cibles et augmenter leur biodégradabilité avant une minéralisation totale des polluants par un traitement biologique. Pour améliorer le rendement de déchloration, la cathode préalablement nickelée a été modifiée par des nanoparticules d’argent car l’argent est considéré comme l’un des meilleurs catalyseurs pour couper sélectivement la liaison carbonehalogène. Le feutre de graphite a été choisi comme support d’électrode pour sa grande surface spécifique. Le principal produit de déchloration de l’alachlor s’est révélé être biorécalcitrant. Pour surmonter ce problème, un traitement par procédé électro-Fenton a été mis en oeuvre pour dégrader les polluants cibles. Une amélioration significative de la biodégradabilité de la solution d’alachlor a pu être observée après le traitement électro- Fenton, et qui est renforcée quand l’atome de chlore a été préalablement éliminé de la structure de l’alachlor par électroréduction. Le bismuth a été également utilisé comme support d’électrode du fait de sa grande surtension visà- vis de la réduction de l’eau. Une grande sélectivité a pu être obtenue sur cathode de bismuth lors de la réduction d’herbicides du type chloracétamide. La réduction électrochimique du dioxyde de carbone a également été réalisée sur électrode de bismuth modifiée par des nanoparticules d’argent comme autre application de cette nouvelle électrode. / Electrochemical process coupling with a biological treatment is a promising alternative for the degradation of biorecalcitrant organo-halogenated compounds in the environment. The electroreduction treatment, known to cut selectively carbon-halogen bonds, was first implemented to decrease the toxicity of the target molecules and increase their biodegradability before a complete mineralization of the pollutants by a biological treatment. To improve the dechlorination efficiency, the cathode was modified by silver nanoparticles after a previous nickelisation, since silver is considered as one of the best electrocatalysts to selectively cleave the carbonhalogen bond. The graphite felt was chosen as the electrode support due to its high specific surface area. For alachlor herbicide, deschloroalachlor, the main by-product after dechlorination, was still biorecalcitrant. To overcome this issue, electro-Fenton treatment, in which hydroxyl radicals were generated to degrade the target pollutants, was implemented. Significant improvement of biodegradability of the alachlor solution was observed after electro-Fenton treatment, which was further improved when the chlorine atom was beforehand removed from the alachlor structure by the electroreduction process. Bismuth was also used as electrode support due to its high overpotential for hydrogen evolution. A high selectivity of chloroacetamide herbicides reduction was observed on the bismuth based cathode. As an extended application of the bismuth based cathode, the electrochemical reduction of carbon dioxide was performed on Bi electrode modified by silver nanoparticles.
3

Removal of organic pollutants from water by electro-Fenton and electro-Fenton like processes / Élimination des polluants organiques de l'eau par les procédés électrochimiques : procédés électro-Fenton et électro-Fenton modifiés

Lin, Heng 29 May 2015 (has links)
Dans ce travail de thèse, les radicaux hydroxyles et sulfates, générés par les procédés électro-Fenton et électro-persulfate utilisant une anode en fer, respectivement, ont été utilisés pour la dégradation des édulcorants synthétiques et un colorant azoïque. Les études réalisées sont essentiellement concentrées sur : efficacité de dégradation, mécanismes d'oxydation, schémas de minéralisation et évolution de la toxicité lors de traitement des polluants cibles.1. Le procédé électro-Fenton a montré une grande efficacité dans la dégradation oxydative de l'Aspartame (ASP). La dégradation et la minéralisation sont essentiellement affectées par la concentration du catalyseur (Fe2+) et l'intensité du courant. La constante de vitesse absolue de la réaction d'hydroxylation de l'ASP a été déterminée comme (5,23±0,02) x 109 M-1 s-1. Les acides oxalique, oxamique et maléique ont été identifiés comme sous-produits aliphatiques. La toxicité de la solution (méthode Microtox) augment dans un premier temps et ensuite diminue progressivement lors du traitement.(2) L'édulcorant artificiel Saccarine (SAC) a été efficacement dégradée par procédé électro-Fenton avec anodes DSA, Pt et BDD. Cependant, l'utilisation de l'anode BDD a accéléré significativement la minéralisation de la SAC. Les conditions optimales pour la minéralisation efficace de la SAC étaient: [SAC]: 0,2 mM, [Fe2+] (catalyseur): 0,2 mM, [Na2SO4] (électrolyte): 0,05 M, I (courant): 200 mA et pH: 3. Les acides oxalique, formique et maléique ont été identifiés comme sous-produits aliphatiques. La mesure de la toxicité indique une augmentation en début d'électrolyse (formation des intermédiaires toxiques) et puis une diminution progressive le long du traitement.(3) L'édulcorant artificiel Sucralose (SUC) a été complètement minéralisée en 360 min de traitement par procédé électro-Fenton avec l'anode Pt ou BDD. Le taux de minéralisation est affecté par la concentration de Fe2+ et le courant appliqué. L'efficacité du courant de minéralisation diminue avec l'augmentation du courant de 100 à 500 mA avec les deux anodes. Les acides oxalique, pyruvique, formique et glycolique ont été détectés au cours du processus de minéralisation.(4) Les solutions du colorant azoïque Orange II ont été effectivement décolorées par les radicaux sulfates générés par l'activation électrochimique du peroxydisulfate (PDS) utilisant un catalyseur solide, FeOOH (procédé CE/α-FeOOH/PDS). Le pH initial a peu d'effet sur la décoloration. La méthodologie RSM (Response Surface Methodology) basée sur le modèle Box-Behnken a été appliquée pour analyser les variables expérimentales. Les résultats indiquent que le courant a un effet positif sur la vitesse de décoloration. L'interaction du dosage de l'α-FeOOH et la concentration de PDS ont des effets significatifs. Les résultats d'analyse de variance (ANOVA) ont confirmé que les modèles proposés étaient exactes et fiables pour l'analyse des variables du procédé CE/α-FeOOH/PDS. Le catalyseur solide α-FeOOH a montré une bonne stabilité structurelle et pourrait être réutilisé.(5) Les solutions d'Orange II ont été dégradés par les radicaux sulfates obtenus par le même procédé mais avec catalyseur Fe3O4 : EC/Fe3O4/PDS. La vitesse de décoloration est affecté principalement par : pH initial de la solution, densité du courant, concentration de PDS et dosage de Fe3O4. La solution a été totalement décolorée en 60 min dans les conditions suivantes: [Orange II]0: 25 mg/L, [PDS]: 10 mM, [Fe3O4]: 0,8 g/L, densité du courant (j): 8,4 mA/cm2 et pH initial: 6,0. Les expériences de recyclage ont montré que les particules de Fe3O4 étaient stables et pourraient être réutilisées. Les spectres XPS ont montré la formation de Fe(II) sur la surface des particules de Fe3O4 lors de traitement. Les principaux intermédiaires ont été séparés et identifiés par la technique GC-MS et un schéma plausible de dégradation d'Orange II a été proposé / In this paper, electro-Fenton and sulfate radical-based electro-Fenton-like processes were used to degrade artificial sweeteners and azo dye. The results obtained during the research concern the removal efficiency, the oxidation mechanism, degradation pathway and toxicity evolution of target pollutants.(1) Electro-Fenton process was a effective method for the degradation of ASP in water. The removal and mineralization rate was affected by the Fe2+ concentration and applied current. The absolute rate constant of hydroxylation reaction of ASP was (5.23 ± 0.02) × 109 M–1 S–1. Short-chain aliphatic acids such as oxalic, oxamic and maleic acid were identified as aliphatic intermediates in the electro-Fenton process. The bacteria luminescence inhibition showed the toxicity of ASP solution decreased after it reached a maximum during the first period of the oxidation reaction.(2) Artificial sweetener SAC could be degraded effectively by electro-Fenton process with a DSA, Pt or BDD anode. However, the using of BDD anode could accelerate the mineralization of SAC. The optimal conditions for SAC removal were SAC concentration 0.2 mM, Fe2+ concentration 0.2 mM, Na2SO4 concentration 50 mM, applied current 200 mA and initial pH 3.0. Oxalic, formic, and maleic acid were observed as aliphatic byproducts of SAC during electro-Fenton process. The bacteria luminescence inhibition showed the toxicity of SAC solution increased at the beginning of electrolysis, and then it declined until the end of the reaction.(3) Artificial sweetener Sucralose could be completely mineralized in a 360 min reaction by electro-Fenton process with a Pt or BDD anode. The mineralization rate was affected by the Fe2+ concentration and applied current. The mineralization current efficiency (MCE) decreased with rising applied current from 100 to 500 mA with both Pt and BDD anode. Oxalic, pyruvic, formic and glycolic acids were detected during the oxidation of sucralose.(4) Orange II was effectively decolorized by EC/α-FeOOH/PDS process. The initial pH of Orange II solution had little effect on the decolorization of Orange II. RSM based on Box-Behnken statistical experiment design was applied to analyze the experimental variables. The response surface methodology models were derived based on the results of the pseudo-first-order decolorization rate constant and the response surface plots were developed accordingly. The results indicated the applied current showed a positive effect on the decolorization rate constant of Orange II. The interaction of α-FeOOH dosage and PDS concentration was significant. The ANOVA results confirmed that the proposed models were accurate and reiable for the analysis of the varibles of EC/α-FeOOH/PDS process. The catalystα-FeOOH showed good structural stability and could be reused.(5) Aqueous solutions of Orange II have been degraded effectively in the EC/Fe3O4/PDS process. The decolorization rate was affected by the initial pH of Orange II solution, current density, PDS concentration and Fe3O4 dosage. Orange II can be totally decolorizated in a 60 min reaction when initial Orange II concentration was 25 mg/L, PDS concentration was 10 mM, Fe3O4 dosage was 0.8 g/L, current density was 8.4 mA/cm2 and initial pH was 6.0. Recycle experiments showed Fe3O4 particles were stable and can be reused. XPS spectrum indicated Fe(II) was generated on the surface of Fe3O4 particles after reaction. The main intermediates were separated and identified by GC-MS technique and a plausible degradation pathway of Orange II was proposed
4

Removal of organic pollutants from water by electro-Fenton and electro-Fenton like processes / Élimination des polluants organiques de l'eau par les procédés électrochimiques : procédés électro-Fenton et électro-Fenton modifiés

Lin, Heng 29 May 2015 (has links)
Dans ce travail de thèse, les radicaux hydroxyles et sulfates, générés par les procédés électro-Fenton et électro-persulfate utilisant une anode en fer, respectivement, ont été utilisés pour la dégradation des édulcorants synthétiques et un colorant azoïque. Les études réalisées sont essentiellement concentrées sur : efficacité de dégradation, mécanismes d'oxydation, schémas de minéralisation et évolution de la toxicité lors de traitement des polluants cibles.1. Le procédé électro-Fenton a montré une grande efficacité dans la dégradation oxydative de l'Aspartame (ASP). La dégradation et la minéralisation sont essentiellement affectées par la concentration du catalyseur (Fe2+) et l'intensité du courant. La constante de vitesse absolue de la réaction d'hydroxylation de l'ASP a été déterminée comme (5,23±0,02) x 109 M-1 s-1. Les acides oxalique, oxamique et maléique ont été identifiés comme sous-produits aliphatiques. La toxicité de la solution (méthode Microtox) augment dans un premier temps et ensuite diminue progressivement lors du traitement.(2) L'édulcorant artificiel Saccarine (SAC) a été efficacement dégradée par procédé électro-Fenton avec anodes DSA, Pt et BDD. Cependant, l'utilisation de l'anode BDD a accéléré significativement la minéralisation de la SAC. Les conditions optimales pour la minéralisation efficace de la SAC étaient: [SAC]: 0,2 mM, [Fe2+] (catalyseur): 0,2 mM, [Na2SO4] (électrolyte): 0,05 M, I (courant): 200 mA et pH: 3. Les acides oxalique, formique et maléique ont été identifiés comme sous-produits aliphatiques. La mesure de la toxicité indique une augmentation en début d'électrolyse (formation des intermédiaires toxiques) et puis une diminution progressive le long du traitement.(3) L'édulcorant artificiel Sucralose (SUC) a été complètement minéralisée en 360 min de traitement par procédé électro-Fenton avec l'anode Pt ou BDD. Le taux de minéralisation est affecté par la concentration de Fe2+ et le courant appliqué. L'efficacité du courant de minéralisation diminue avec l'augmentation du courant de 100 à 500 mA avec les deux anodes. Les acides oxalique, pyruvique, formique et glycolique ont été détectés au cours du processus de minéralisation.(4) Les solutions du colorant azoïque Orange II ont été effectivement décolorées par les radicaux sulfates générés par l'activation électrochimique du peroxydisulfate (PDS) utilisant un catalyseur solide, FeOOH (procédé CE/α-FeOOH/PDS). Le pH initial a peu d'effet sur la décoloration. La méthodologie RSM (Response Surface Methodology) basée sur le modèle Box-Behnken a été appliquée pour analyser les variables expérimentales. Les résultats indiquent que le courant a un effet positif sur la vitesse de décoloration. L'interaction du dosage de l'α-FeOOH et la concentration de PDS ont des effets significatifs. Les résultats d'analyse de variance (ANOVA) ont confirmé que les modèles proposés étaient exactes et fiables pour l'analyse des variables du procédé CE/α-FeOOH/PDS. Le catalyseur solide α-FeOOH a montré une bonne stabilité structurelle et pourrait être réutilisé.(5) Les solutions d'Orange II ont été dégradés par les radicaux sulfates obtenus par le même procédé mais avec catalyseur Fe3O4 : EC/Fe3O4/PDS. La vitesse de décoloration est affecté principalement par : pH initial de la solution, densité du courant, concentration de PDS et dosage de Fe3O4. La solution a été totalement décolorée en 60 min dans les conditions suivantes: [Orange II]0: 25 mg/L, [PDS]: 10 mM, [Fe3O4]: 0,8 g/L, densité du courant (j): 8,4 mA/cm2 et pH initial: 6,0. Les expériences de recyclage ont montré que les particules de Fe3O4 étaient stables et pourraient être réutilisées. Les spectres XPS ont montré la formation de Fe(II) sur la surface des particules de Fe3O4 lors de traitement. Les principaux intermédiaires ont été séparés et identifiés par la technique GC-MS et un schéma plausible de dégradation d'Orange II a été proposé / In this paper, electro-Fenton and sulfate radical-based electro-Fenton-like processes were used to degrade artificial sweeteners and azo dye. The results obtained during the research concern the removal efficiency, the oxidation mechanism, degradation pathway and toxicity evolution of target pollutants.(1) Electro-Fenton process was a effective method for the degradation of ASP in water. The removal and mineralization rate was affected by the Fe2+ concentration and applied current. The absolute rate constant of hydroxylation reaction of ASP was (5.23 ± 0.02) × 109 M–1 S–1. Short-chain aliphatic acids such as oxalic, oxamic and maleic acid were identified as aliphatic intermediates in the electro-Fenton process. The bacteria luminescence inhibition showed the toxicity of ASP solution decreased after it reached a maximum during the first period of the oxidation reaction.(2) Artificial sweetener SAC could be degraded effectively by electro-Fenton process with a DSA, Pt or BDD anode. However, the using of BDD anode could accelerate the mineralization of SAC. The optimal conditions for SAC removal were SAC concentration 0.2 mM, Fe2+ concentration 0.2 mM, Na2SO4 concentration 50 mM, applied current 200 mA and initial pH 3.0. Oxalic, formic, and maleic acid were observed as aliphatic byproducts of SAC during electro-Fenton process. The bacteria luminescence inhibition showed the toxicity of SAC solution increased at the beginning of electrolysis, and then it declined until the end of the reaction.(3) Artificial sweetener Sucralose could be completely mineralized in a 360 min reaction by electro-Fenton process with a Pt or BDD anode. The mineralization rate was affected by the Fe2+ concentration and applied current. The mineralization current efficiency (MCE) decreased with rising applied current from 100 to 500 mA with both Pt and BDD anode. Oxalic, pyruvic, formic and glycolic acids were detected during the oxidation of sucralose.(4) Orange II was effectively decolorized by EC/α-FeOOH/PDS process. The initial pH of Orange II solution had little effect on the decolorization of Orange II. RSM based on Box-Behnken statistical experiment design was applied to analyze the experimental variables. The response surface methodology models were derived based on the results of the pseudo-first-order decolorization rate constant and the response surface plots were developed accordingly. The results indicated the applied current showed a positive effect on the decolorization rate constant of Orange II. The interaction of α-FeOOH dosage and PDS concentration was significant. The ANOVA results confirmed that the proposed models were accurate and reiable for the analysis of the varibles of EC/α-FeOOH/PDS process. The catalystα-FeOOH showed good structural stability and could be reused.(5) Aqueous solutions of Orange II have been degraded effectively in the EC/Fe3O4/PDS process. The decolorization rate was affected by the initial pH of Orange II solution, current density, PDS concentration and Fe3O4 dosage. Orange II can be totally decolorizated in a 60 min reaction when initial Orange II concentration was 25 mg/L, PDS concentration was 10 mM, Fe3O4 dosage was 0.8 g/L, current density was 8.4 mA/cm2 and initial pH was 6.0. Recycle experiments showed Fe3O4 particles were stable and can be reused. XPS spectrum indicated Fe(II) was generated on the surface of Fe3O4 particles after reaction. The main intermediates were separated and identified by GC-MS technique and a plausible degradation pathway of Orange II was proposed
5

Études cinétiques et mécanistique d'oxydation/minéralisation des antibiotiques sulfaméthoxazole (SMX), amoxicilline (AMX) et sulfachloropyridazine (SPC) en milieux aqueux par procédés électrochimiques d'oxydation avancée. Mesure et suivi d'évolution de la toxicité lors du traitement

Dirany, Ahmad 14 December 2010 (has links) (PDF)
Suite à leur utilisation, les médicaments sont souvent partiellement métabolisés; ainsi ces substances pharmaceutiques et/ou leurs métabolites sont rejetés continuellement dans les eaux usées. Leur présence et accumulation dans les eaux naturelles constituent une pollution émergente conduisant à la perturbation des écosystèmes et l'accroissement de mal fonctionnement de la reproduction des espèces aquatiques telles que les poissons. Parmi les polluants pharmaceutiques, les antibiotiques méritent une attention particulière parce qu'ils sont utilisés en grande quantité d'une part et constituent des molécules biologiquement actives pouvant interagir avec des cibles biologiques spécifiques conduisant à l'apparition du phénomène de résistance des micro-organismes potentiellement pathogènes tels que les bactéries (vis-à-vis de ces médicaments employés pour les combattre). Une action préventive est donc indispensable pour réduire leur présence dans les milieux aquatiques naturels. Dans ce travail nous avons appliqué le procédé électro-Fenton (EF), une méthode indirecte d'oxydation électrochimique très performante, à la dégradation des polluants pharmaceutiques sélectionnés, trois antibiotiques couramment utilisés : le sulfaméthoxazole (SMX), l'amoxicilline (AMX) et sulfachloropyridazine (SCP). Le traitement des solutions aqueuses de ces antibiotiques été réalisé en milieux aqueux acide à l'aide des radicaux hydroxyles générés électrochimiquement. Les radicaux hydroxyles sont produits in situ à courant constant dans une cellule électrochimique non divisée, munie d'une cathode tridimensionnelle de grande surface spécifique (feutre de carbone) et d'une anode de Pt ou de BDD afin de suivre la cinétique d'oxydation avec les radicaux hydroxyles et la minéralisation de leurs solutions aqueuses. Ces radicaux sont générés à travers la réaction de Fenton : H2O2 + Fe2+ + H+ → Fe3+ + H2O + *OH dans laquelle les réactifs générés (H2O2) ou régénéré (Fe2+ en tant que catalyseur) électrocatalytiquemment. L'influence des différents paramètres sur la cinétique de dégradation des antibiotiques et sur la cinétique de minéralisation des solutions d'antibiotiques a été étudiée. L'effet co-catalytique des ions Cu2+ a été aussi examiné. Les radicaux hydroxyles formés sont des oxydantes très puissants et réagissent sur les antibiotiques en question conduisant à leur minéralisation. L'étude cinétique montre que la dégradation oxydative des trois antibiotiques suit une cinétique de réaction du pseudo-premier ordre, avec des temps de dégradation assez courts. Par exemple, avec une anode de Pt, l'oxydation complète des molécules SMX, AMX et SCP a été achevée en moins de 15 min à 300 mA. Afin d'établir les voies de dégradation avec les radicaux hydroxyles, les intermédiaires aromatiques, les acides carboxyliques formés ainsi que les ions inorganiques libérés dans la solution lors du traitement ont été identifiés et leur évolution dans le temps a été suivie. Les valeurs des constantes de vitesse des réactions entre les *OH et les antibiotiques et leurs intermédiaires ont été déterminés par la technique de cinétique de compétition à l'aide d'un composé de référence, l'acide p-hydroxybenzoϊque. L'efficacité du procédé d'oxydation anodique (OA) avec une anode Pt et BDD à titre comparatif avec le procédé électro-Fenton a été aussi étudiée. L'efficacité de minéralisation des solutions aqueuses d'antibiotique à été évaluée par mesure du carbone organique total (COT). Le suivi de la toxicité lors du traitement des solutions d'antibiotiques par la méthode Microtox®, (une méthode basée sur la mesure de la luminescence des bactéries marines Vibrio fischeri) a montré la formation des intermédiaires plus toxiques que les molécules mères. L'ensemble des résultats obtenus confirme l'efficacité du procédé électro-Fenton pour la dépollution des effluents aqueux chargés d'antibiotiques.
6

Dégradation des colorants textiles par procédés d'oxydation avancée basée sur la réaction de Fenton : application à la dépollution des rejets industriels / Degradation of textile dyes by advanced oxidation processes based on fentonreaction : application to the depollution of industrial effluents

Chergui, Souâd 18 October 2010 (has links)
Les procédés dits d'oxydation avancés (POA) permettent la dégradation totale (minéralisation) en milieu aqueux des polluants organiques persistants et/ou toxiques pour l'homme et pour l'environnement. Cette étude porte sur l'application de deux POA principaux : électro-Fenton et photo-Fenton, au traitement des eaux polluées par des colorants de textile. La particularité de ces procédés tient à la génération dans le milieu d'entités oxydantes très réactives, les radicaux hydroxyles (●OH) qui sont capables d'oxyder n'importe quelle polluant organique ou organométallique jusqu'au stade ultime d'oxydation, c'est-à-dire la minéralisation (transformation en CO₂ et H₂O). Dans le cas des colorants étudiés (BB41, BR46 et BY28), il a été montré que le taux de minéralisation par le procédé électro-Fenton dépend des paramètres expérimentaux tels que la concentration du catalyseur, l'intensité du courant appliqué, le pH du milieu, etc.. Cette étude a montré que l'électrolyse du colorant suit une cinétique de pseudo premier ordre. Dans les conditions expérimentales optimales (I = 225 mA et [Fe³⁺]₀ = 0,1 mM), les taux de minéralisation obtenus pour des solutions aqueuses des trois colorants étudiés étaient de 93, 82 et 73% pour le BB41, BR46 et BY28 respectivement après 6 h de traitement. Le taux de minéralisation par le procédé photo-Fenton (UV/Fe³⁺/H₂O₂) est fonction des doses des réactifs utilisés et des rapports R = [H₂O₂]/[Fe³⁺] et R' = [Fe³⁺]/[substrat]. Ainsi, les taux de minéralisation obtenus sont de l'ordre de 93% pour le BB41, 85% pour le BR46 et de 95% pour le BY28 pour une durée de traitement de 5 heures avec des rapports R = 10 et R' = 40. L'étude de la dégradation du colorant BB41 sur une unité pilote utilisant le rayonnement solaire a montré que le procédé hélio-photo-Fenton est très efficace. Ce procédé s'inscrit dans une perspective de développement durable et son fonctionnement est basé sur une énergie renouvelable. Une comparaison des performances de minéralisation d'un mélange de colorants par les deux procédés étudiés par l'estimation de l'énergie électrique consommée a montré que les procédés photo-Fenton et électro-Fenton permettent d'atteindre des taux de minéralisation très importants et que le procédé électro-Fenton semble être favorisé avec non utilisation de réactifs chimiques et une faible consommation d'énergie électrique / Advanced oxidation processes (AOPs) permit the total degradation (mineralization) in aqueous solutions of hazardous organic molecules for human being and for the environment. This study concerns the application of two main AOPs: electro-Fenton, and photo-Fenton, to treatment of wastewater containing toxic and/or persistent organic pollutants such as textile dyes. The characteristic of these processes is due to the generation of very reactive and highly oxidizing species, hydroxyl radicals (●OH) which are able to oxidize any organic pollutant until the ultimate oxidation stage, i.e. mineralization (transformation into CO₂ and H₂O).In the study the aqueous solutions of dyes BB41, BR46 and BY28 have been treated by two selected AOPs. It has been shown that the mineralization rate by electro-Fenton process depends on operating parameters such as catalysis concentration, applied current intensity, pH, etc. It was also observed that e dyes degradation obeys to a pseudo first-order reaction. Under the optimal operating conditions ([Fe³⁺] = 0.1mM, I = 225 mA, pH = 3), electro-Fenton process can lead to an almost mineralization of dyes solutions: 93, 82 and 73% of TOC abatement are obtained for BB41, BR46 and BY28 respectively.The rate of mineralization by the photo-Fenton (UV/Fe³⁺/H₂O₂) is a function of used reagents doses, the ratio R = [H2O2]/[Fe³⁺] and R' = [Fe³⁺]/[substrate]. Thus, mineralization rates obtained are around 93% for the BB41, 85% for BR46 and 95% for BY28 for a treatment time of 5 h with a ratios R = 10 and R' = 40. The study of the degradation of the dye BB41 on a pilot plant using solar radiation showed that the process Helio-photo-Fenton is very effective. This process is part of a sustainable development perspective and its operation is based on renewable energy.A comparison of the mineralization performances of different studied processes in terms of mineralization degree and energy efficiency showed that photo-Fenton and electro-Fenton processes permit to reach high mineralization rate and that the electro-Fenton process can be considered the more efficient technique with no use of chemicals and low energy consumption
7

DEGRADATION DES POLLUANTS ORGANIQUES PAR LA TECHNOLOGIE ELECTRO-FENTON

Ozcan, Ali 19 March 2010 (has links) (PDF)
Une étude détaillée a été effectuée sur l'utilisation de la technique électro-Fenton pour l'oxydation de quelques polluants organiques persistants (POP) dans le but du traitement des eaux usées. Cette technique génère, in situ et de manière électrocatalytique, les radicaux hydroxyles (OH) afin de les utiliser pour oxyder la polluants organiques. Le travail de thèse est constitué en trois parts. Dans la première partie, l'élimination de l'eau des colorants synthétiques et pesticides choisis comme polluants modèles a été effectuée en utilisant une cathode en feutre de carbone. Les cinétiques d'oxydation des colorants synthétiques (Acide Orange 7 et Bleu Basique 3) et des pesticides (picloram, prophame, azinphos-méthyl et clopyralid) ont été déterminées. La cinétique de minéralisation des solutions aqueuses des polluants organiques en question a été suivie par des analyses de carbone organique totale (COT) et demande chimique en oxygène (DCO). Une minéralisation quasi-totale a été obtenue dans tous les cas. L'identification et la quantification des sousproduits d'oxydation des colorants synthétiques et pesticides ont été effectuées par les techniques d'analyse suivantes: Chromatographie liquide à haute performance (CLHP), chromatographie en phasegazeuse-spectrométrie de masse (GC/MS), chromatographie liquide à haute performances-péctrométrie de masse (HPLC/MS) et chromatographie ionique. Ces analyses systématique ont mis en évidence que les polluants organiques initiaux ont sont convertis en trois formes d'intermédiaires réactionnels; intermédiaires organiques, acides carboxyliques à courte chaîne et ions inorganiques. Basé sur l'identification ces des intermédiaires réactionnels, une schéma de minéralisation plausible a été proposé pour chaque colorant et pesticide étudié. Dans la deuxième partie de l'étude, la capacité de production de peroxyde d'hydrogène (H2O2) de la cathode en éponge de carbone comme matériau original de cathode pour la technique électro-Fenton a été étudiée pour la première fois. Les résultats obtenus ont indiqué que le l'éponge de carbone possède une capacité de la production d'H2O2 trois fois plus élevée par rapport à la cathode classique (feutre de carbone). La troisième et dernière partie de cette thèse a été consacrée à l'étude de l'efficacité et l'utilisation en électro-Fenton d'une anode de nouvelle génération, le diamant dopé au bore (BDD pour "Boron Doped Diamond"). Tout d'abord, l'efficacité d'oxydation et la capacité de minéralisation de l'anode BDD ont été examinées sur l'herbicide propham dans les conditions d'oxydation anodique. Ensuite, la combinaison de cathode en feutre de carbone et l'anode BDD dans la technique électro-Fenton a été examinée. Les résultats obtenus ont montré que cette combinaison conduit aux résultats significativement meilleurs que le système classique feutre de carbone - Pt. L'utilisation de l'anode BDD dans l'électro-Fenton améliore considérablement la cinétique d'oxydation et l'efficacité de minéralisation des polluants organiques et en particulier des acides carboxyliques tels que les acides oxalique et oxamique qui résistent à la minéralisation dans le cas de l'anode Pt.
8

Minéralisation des antibiotiques par procédé électro-Fenton et par procédé combiné électro-Fenton : traitement biologique : application à la dépollution des effluents industriels / Mineralization of antibiotics by electro-Fenton process and by combined process electro-Fenton : biological treatment : application to the elimination of the industrial effluents' pollution

Mansour, Dorsaf 21 May 2015 (has links)
La présence des antibiotiques à usage humain et vétérinaire dans l’écosystème aquatique, est devenue un problème écologique sérieux. En effet, ces substances résistent aux traitements des stations d’épuration, ce qui engendre leur introduction et accumulation dans l’environnement. Par conséquent, le développement de méthodes efficaces pour le traitement de ces polluants est nécessaire. La première partie de ce travail de thèse s’inscrit dans le cadre de la dégradation des antibiotiques par procédé électro-Fenton. Ce procédé consiste à produire in situ des espèces fortement oxydantes, les radicaux hydroxyle, permettant la dégradation totale des composés organiques persistants. La sulfaméthazine (SMT) et le triméthoprime (TMP) ont été choisis comme composés modèles, en raison de leur détection régulière dans les effluents des stations d’épuration, les eaux de surface et les eaux souterraines. Dans cette première partie, nous avons examiné l’influence de différents paramètres expérimentaux, sur l’efficacité du procédé électro-Fenton. Les conditions opératoires optimales nécessaires pour la dégradation totale des deux antibiotiques étudiés, ont été également déterminées. En outre, les produits intermédiaires aromatiques générés lors de la dégradation des deux antibiotiques, ont été identifiés. Leur évolution durant l’électrolyse a été également suivie. La deuxième partie est consacrée à l’étude de la minéralisation de la SMT et du TMP par procédé électro-Fenton. Les résultats obtenus indiquent que les taux de minéralisation de la SMT et du TMP sont respectivement de 91 et 85% après dix-huit heures de traitement. Les acides carboxyliques formés, ainsi que les ions inorganiques libérés ont été identifiés, leur évolution a été suivie au cours du traitement. De plus, en se basant sur les différents sous-produits générés, nous avons proposé des mécanismes réactionnels pour la minéralisation de la SMT et du TMP par procédé électro-Fenton. La troisième partie de ce travail porte sur l’étude de la minéralisation des deux antibiotiques considérés par couplage du procédé électro-Fenton et d’un traitement biologique. La SMT et le TMP, ont été prétraités par procédé électro-Fenton, ce qui a conduit à leur dégradation totale, avec des taux de minéralisation faibles. Par la suite, un traitement biologique a été effectué durant 20 jours, les taux globaux de minéralisation ont alors augmenté pour atteindre 81 et 68% pour respectivement la SMT et le TMP. Dans une dernière partie, nous avons procédé à la minéralisation de deux effluents industriels, contenant les antibiotiques étudiés, par couplage du procédé électro-Fenton et d’un traitement biologique. Les taux de minéralisation globaux obtenus sont de 81 et 89% pour respectivement l’effluent SMT et l’effluent TMP. Ce qui prouve la pertinence du procédé combiné, pour le traitement des effluents industriels. / The occurrence of human and veterinary antibiotics in the aquatic ecosystem becomes a serious environmental problem. These compounds cannot be treated by wastewater treatment plants, resulting in their entry and accumulation to measurable levels in the environment. Over the last decade, the conventional biological processes were used for wastewater treatment, but did not appear to be enough effective when dealing with wastes containing antibiotics, owing to the important recalcitrance of these compounds. Therefore, the development of efficient methods to treat antibiotics is needed. The first part of this thesis is focused on the degradation of antibiotics by electro-Fenton process. This process consists in producing in situ strongly oxidizing species, hydroxyl radicals, allowing the total degradation of persistent and toxic organic compounds. Sulfamethazine (SMT) and trimethoprim (TMP) were selected as model compounds, because of their regular detection in the effluents of sewage plants, surface water and groundwater. In this first part, we examined the influence of various operating parameters, on the efficiency of electro-Fenton process. The optimal operating conditions necessary for the removal of the studied antibiotics, were also determined. Moreover, the aromatic intermediate products, generated during antibiotics degradation, were identified. Their evolution during electrolysis was also followed. The second part is devoted to the study of mineralization, of SMT and TMP, by the electro-Fenton process. The obtained results indicate that the yields of SMT and TMP mineralization were 91 and 85%, respectively after eighteen hours of treatment. The identification and monitoring of short chain carboxylic acids and released inorganic ions during the treatment, were carried out. Furthermore, based on the identified by-products, we proposed a plausible mineralization reaction pathway for SMT and TMP. The third part of this work concerns the study of the mineralization of considered antibiotics by a combined process coupling an electro-Fenton pretreatment and a biological degradation. SMT and TMP were pretreated by the electro-Fenton process, which led to their total degradation, with low levels of mineralization, ensuring significant residual organic content for a subsequent biological treatment. Afterwards, biological treatment was performed during 20 days and showed that the level of overall mineralization increased to reach 81 and 68% for SMT and TMP, respectively. In a last part, we carried out the mineralization of two industrial effluents containing SMT and TMP, by combining electro-Fenton and activated sludge treatment. Overall mineralization yields of the combined process of 81 and 89% were obtained for SMT effluent and TMP effluent, respectively. This result confirms the relevance of combined process, even for the treatment of industrial effluents.
9

Bio-electro-Fenton : optimization of electrochemical advanced oxidation process in the perspective of its combination to a biological process for the removal of pharmaceuticals from wastewater / Bio-électro-Fenton : optimisation d'un procédé électrochimique d'oxydation avancée en vue de sa combinaison avec un procédé biologique pour l'élimination des produits pharmaceutiques des eaux usées

Ganzenko, Oleksandra 10 December 2015 (has links)
La pollution des ressources en eau est un des défis importants auquel les Hommes doivent faire face. En particulier, de nouvelles solutions doivent émerger, puisque les techniques conventionnelles de traitement utilisées actuellement ne permettent pas une élimination efficace des divers polluants. Parmi les polluants émergents, les composés pharmaceutiques ont récemment été détectés dans différentes sources d'eau à travers le monde. Leurs effets indésirables sur l'environnement naturel et sur l'Homme ont déjà été reconnus mais doivent encore être éclaircis. De nombreux nouveaux procédés de traitement de l'eau apparaissent. En particulier, le procédé électro-Fenton a démontré sa capacité à éliminer les pharmaceutiques et autres contaminants persistants. Ce procédé est basé sur la génération in-situ d'une espèce oxydante très puissante, les radicaux hydroxyles (OH), qui permettent la dégradation non-sélective des polluants. Cependant, cela nécessite l'utilisation d'une quantité d'énergie importante, relativement coûteuse. Une solution viable est de coupler le procédé électro-Fenton avec un procédé biologique. En effet, l'utilisation de ce dernier est beaucoup plus économique, mais il possède une efficacité limitée envers les polluants persistants tels que les pharmaceutiques. Ainsi, le procédé hybride bio-électro-Fenton apparaît comme un bon compromis entre le coût et l'efficacité. Le but de cette thèse de doctorat a donc été d'optimiser le procédé électro-Fenton dans l'optique de le coupler avec un procédé biologique, afin d'éliminer les pharmaceutiques. Les principaux objectifs de cette étude reposent sur l'étude de l'influence des paramètres opératoires utilisés au cours du procédé électro-Fenton sur (a) la dégradation des pharmaceutiques ; (b) la minéralisation de la matière organique ; (c) l'évolution de la biodégradabilité; (d) la consommation énergétique. Cette thèse est composée de trois parties, au cours desquelles la complexité des solutions traitées a progressivement augmentée. Premièrement, une étude a été menée sur des solutions de produits pharmaceutiques seuls afin de mieux comprendre les mécanismes impliqués au cours de leur dégradation. La seconde partie porte sur l'étude expérimentale d'une solution synthétique composée d'un mélange de 13 pharmaceutiques. La dernière étape a consisté à mettre en place un procédé bio-électro-Fenton pour le traitement d'un effluent pharmaceutique réel. Cette démarche progressive a permis de mieux comprendre l'influence des paramètres opératoires utilisés au cours du procédé électro-Fenton. Les principaux résultats obtenus sont notamment l'optimisation de deux paramètres opératoires important : la concentration du catalyseur (Fe2+) et l'intensité du courant. L'influence de ces paramètres s'est révélée similaires au cours du traitement de tous les types de solution testée. Il a donc été possible de conclure que les valeurs optimales sont une concentration en Fe2+ de 0,2 mM et une intensité entre 100 et 500 mA. L'efficacité d'élimination des pharmaceutiques a été plus importante en utilisant des intensités plus faibles (100-300 mA). Cependant, la biodégradabilité de l'effluent, un paramètre important dans l'optique du post-traitement biologique, a été d'avantage augmentée en utilisant des intensités élevées (500-1000 mA). Par ailleurs, l'utilisation d'intensités élevées a aussi mené à augmenter la consommation énergétique, en particulier dans le cas de temps de traitement longs. Il apparaît donc évident qu'un compromis entre efficacité et consommation énergétique doit être trouvé pour chaque cas particulier et effluent à traiter. Pour conclure, les avancées de cette recherche sont principalement attribuées à la nouveauté de la combinaison bio-électro-Fenton. L'étude de l'influence des paramètres opératoires du procédé électro-Fenton a aussi permis d'améliorer la compréhension de cette nouvelle technique et contribue à son développement vers une application industrielle / Water pollution is one of the biggest challenges that humanity faces and combating it requires the development of treatment processes, as conventional methods used nowadays are no longer effective for the removal of various complex pollutants. Recently pharmaceuticals have been recognized to be contaminants of emerging environmental concern as their traces were detected in a spectrum of water bodies around the globe. The long term effects of their presence in a natural environment are not yet fully studied, but the potential outcomes can be detrimental to a sustainable future. Among the variety of currently rising treatment technologies, the electro-Fenton method, an electrochemical advanced oxidation process, has demonstrated an ability to eliminate pharmaceuticals as well as other types of persistent contaminants. This electrocatalytical process generates in situ strong oxidants species - hydroxyl radical (OH) - which non-selectively degrade organic pollutants. Due to the extensive cost in the application of electrical energy, its operation might be cost-prohibitive. A solution would be to combine it with biological processes which are more economically viable, but also less effective in the removal of pharmaceuticals. The combined process is expected to have a synergetic effect between cost and effectiveness. The goal of this PhD thesis is to optimize operating conditions of the electro-Fenton process for a feasible combination with a biological process as a means of treating pharmaceutical pollution. The main objectives addressed by this work are related to the influence of operating parameters of the electro-Fenton process on (a) removal of pharmaceuticals; (b) mineralization of organic matter; (c) enhancement of biodegradability; (d) energy consumption. The thesis has three distinct parts related to the type of treated aqueous solution. First, a mechanistic study was conducted on aqueous solutions of individual pharmaceuticals in order to understand general trends of their removal. Next, a series of experiments was carried out on a synthetic mixture of thirteen pharmaceuticals from different therapeutic classes. Lastly, laboratory bench-scale reactors of a combined bio-electro-Fenton process were operated for the treatment of real wastewater. The advance in the complexity of the treated solution allowed a comprehensive comparison and analysis of the influence of the operating parameters. The main results include the optimal values of two operating parameters: the catalyst (Fe2+) concentration and the applied current intensity for a given electro-Fenton setup. The effects of the operating parameters on the removal of pharmaceuticals and other organic matter were similar regardless of the treated solution. The optimal value for the Fe2+ concentration was concluded to be around 0.2 mM. The optimal current intensity was in the range 100-500 mA. The efficiency of the current in terms of the pharmaceuticals' removal was the highest with the lowest intensity (100-300 mA). At the same time the biodegradability, which was an important factor in the biological post-treatment process, improved with higher intensities of electric current (500-1000 mA). However, high current intensities resulted in an elevated energy consumption, particularly with a prolonged treatment time. A tradeoff would have to be consequently made between energy saving and the removal rates that should be found in any single case. The novelty of the research presented in this PhD thesis is firstly attributed to the novelty of the combination of electro-Fenton to a biological process. A detailed study of the influence of operating parameters of the electro-Fenton process on removal rates and biodegradability enhancement contributed not only to the general knowledge on the electro-Fenton process, but also to the advancement towards its upscaling and then further towards the industrial application of this technique
10

Étude de dégradation des colorants de textile par les procédés d'oxydation avancée. Application à la dépollution des rejets industriels

Hammami, Samiha 12 December 2008 (has links) (PDF)
Cette étude porte sur l'application de différents procédés d'oxydation avancée, POA (plasma d'air humide, électro-Fenton, photo-Fenton et oxydation anodique avec BDD) pour le traitement des colorants de textile. La particularité de ces procédés tient à la génération dans le milieu d'entités très réactives et très oxydantes, les radicaux hydroxyles *OH qui sont capables d'oxyder n'importe quelle molécule organique jusqu'au stade ultime d'oxydation, c'est-à-dire la minéralisation (transformation en CO2 et H2O). Le plasma d'air humide a été appliqué pour l'oxydation d'un colorant azoïque, l'OD 61. Différents catalyseurs (Fe2+, Fe3+ et TiO2) ont été ajoutés dans leurs conditions optimisées afin d'améliorer les performances du système Glidarc. La combinaison des deux catalyseurs: Fe2+ et TiO2 a permis de décolorer 91% de l'OD 61 au bout de 3 heures et d'atteindre un taux d'abattement du COT de l'ordre de 52% après 10 heures de traitement. La méthodologie de la recherche expérimentale a été appliquée dans ce mémoire afin d'étudier l'influence de: l'intensité du courant, la concentration du colorant et le temps d'électrolyse sur la vitesse de disparition de l'OD 61 et afin de déterminer les conditions optimales de sa minéralisation. Dans les conditions optimales obtenues ([colorant] = 0,53.10-3 mol.L-1, I = 250 mA), le procédé électro-Fenton (EF) permet d'atteindre des taux de minéralisation de l'ordre de 98% dans le cas de l'OD 61 et l'AO 7 et de 88% dans le cas de l'indigo carmine. L'identification des produits intermédiaires au cours de l'électrolyse a permis de proposer un mécanisme de minéralisation de l'AO7. Les constantes cinétiques apparentes et absolues ont été déterminées. La dégradation de l'indigo a été étudiée par oxydation anodique avec BDD (OA-BDD) et par procédé photo-Fenton (PF). Cette étude a montré que l'électrolyse de l'indigo suit une cinétique de pseudo premier ordre et que le taux d'abattement du COT était de l'ordre de 97% et 63% respectivement avec OA-BDD et PF. Une étude comparative pour l'oxydation de l'AO 7 a été menée par trois procédés d'oxydation avancée: PF, OA- BDD et EF-Pt et EF-BDD. Cette étude a montré que le procédé photo-Fenton permet d'atteindre des taux d'abattement supérieurs à 90% après seulement 2 heures de traitement. Toutefois, le PF s'est révélé le plus coûteux suite à l'utilisation de la lumière artificielle UV et l'ajout des réactifs. Par ailleurs, le traitement d'un effluent réel issu de l'industrie de textile par le procédé électro-Fenton avec une anode de platine a permis la minéralisation presque totale du rejet initial (94% du COT initial ont été éliminés).

Page generated in 0.0852 seconds