• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 5
  • 2
  • Tagged with
  • 29
  • 15
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude du rôle des lysosomes et du cholestérol au cours de la différenciation des kératinocytes épidermiques.

Jans, Ralph 22 April 2004 (has links)
Etude du rôle des lysosomes et du cholestérol au cours de la différenciation des kératinocytes épidermiques (par Ralph Jans) La majorité des rôles protecteurs de l’épiderme, couche superficielle de la peau, sont garantis par les kératinocytes qui se différencient de manière progressive et terminale dans les couches suprabasales de ce tissu, dont le renouvellement est assuré par la prolifération de cellules-souches dans la couche basale. Toute perturbation des mécanismes qui contrôlent la prolifération et/ou la différenciation des kératinocytes conduit à des dysfonctionnements. Comprendre ces mécanismes reste donc un défi majeur pour la biologie cutanée. Plusieurs types cellulaires subissent l’exocytose de lysosomes quand il y a entrée d’ions calcium dans les cellules. Puisque les kératinocytes subissent une entrée de calcium au cours de leur différenciation, ces cellules pourraient exocyter des lysosomes dans ces circonstances. Un traitement de kératinocytes avec un ionophore induit en effet une sécrétion de la forme mature lysosomale de la cathepsine D, une libération de l’activité des enzymes lysosomales solubles cathepsine C et β-galactosidase, ainsi que l’apparition des protéines lysosomales membranaires Lamp-1 et Lamp-2 au niveau de la membrane plasmique. L’exocytose de lysosomes peut donc faire partie de la différenciation des kératinocytes, mais permet aussi à ces cellules de réparer des ruptures de la membrane plasmique. Puisque le cholestérol pourrait contrôler certaines voies de signalisation au cours de la différenciation des kératinocytes, nous avons analysé les effets d’une déplétion en cholestérol induite par un traitement avec la méthyl-β-cyclodextrine sur le phénotype et la signalisation du kératinocyte. Cette déplétion induit une augmentation de l’expression de l’involucrine, marqueur de différenciation tardive, et une répression de l’expression de la kératine 10, marqueur de la différenciation précoce, et de la kératine 14, marqueur des kératinocytes non-différenciés. Ce traitement active le récepteur de l’EGF et HER2, ainsi que la MAP kinase p38 dont l’activation (en particulier l’activation de p38α) est responsable de l’augmentation de l’expression de l’involucrine. En résumé, nos observations suggèrent un nouveau rôle pour les lysosomes au cours de la différenciation des kératinocytes épidermiques, mais suggèrent surtout un rôle critique du cholestérol dans la régulation de ce processus. Role of lysosomes and cholesterol during the differentiation process of epidermal keratinocytes (by Ralph Jans) A major part of the protective role of the epidermis, superficial layer of the skin, is guaranteed by the keratinocytes that differentiate progressively and terminally in the suprabasal layers of this tissue. The renewal of the epidermis is performed by proliferating stem cells in the basal layer. Perturbation of the mechanisms that regulate the proliferation and/or the differentiation of keratinocytes leads to an invalid barrier function. Therefore, elucidating these mechanisms is a major challenge for skin researchers. In several cell types, lysosomes undergo exocytosis upon entry of calcium into the cells. Since keratinocytes are subjected to an entry of calcium during their differentiation in vivo, these cells could exhibit an exocytosis of lysosomes under these circumstances. The results presented in this work show that an incubation of keratinocytes with the calcium ionophore ionomycin triggers the secretion of the enzymatic activities of the lysosomal enzymes cathepsin C and β-galactosidase as well as the release of the lysosomal form of cathepsin D. This treatment also induces the appearance of the lysosomal membrane proteins Lamp-1 and Lamp-2 at the plasma membrane of keratinocytes. Exocytosis of lysosomes could be part of the keratinocyte differentiation process, but could also allow these cells to repair their plasma membrane upon disruption due to mechanical stresses. Since cholesterol could be involved in the regulation of several signal transduction pathways during keratinocyte differentiation, we have investigated the effects of a depletion of cholesterol on the keratinocyte phenotype and on selected signaling pathways. Cholesterol depletion was induced by incubating the cells with methyl-β-cyclodextrin. This treatment, followed by an inhibition of cholesterol neosynthesis using lovastatin, triggers an upregulation of the expression of involucrin, a late differentiation marker, and a downregulation of keratin 10 and keratin 14, which, respectively, are markers of early-differentiating and undifferentiated keratinocytes. Cholesterol depletion activates the membrane receptors EGFR and HER2 and the MAP kinase p38. Using the specific inhibitor PD169316, we demonstrate that the p38α isoform is responsible for the upregulation of involucrin during cholesterol depletion. In summary, our observations suggest a novel role for lysosomes during keratinocyte differentiation and indicate a critical role for cholesterol in the regulation of this process.
2

La dynamique du potentiel trans-épithélial au cours de la cicatrisation de la peau

Rochette-Drouin, Olivier 18 April 2018 (has links)
Le potentiel trans-épithélial (PTE) représente la différence de charges qui existe dans un tissu étanche composé de cellules pluristratifiées. La distribution inégale de certains ions à travers l'épiderme est responsable de sa présence dans la peau. Des mesures de PTE ont été effectuées à différents temps lors de la genèse de l'épiderme ainsi que durant la réépithélialisation d'une plaie sur un modèle de peau humaine reconstruite par génie tissulaire. L'intensité du PTE varie en fonction du temps dans les deux conditions et cette cinétique a été confirmée au cours de la réépithélialisation d'une plaie sur un modèle in vivo. L'expression des pompes Na⁺/K⁺ ATPase varie elles aussi en fonction du temps et l'utilisation de l'amiloride, un inhibiteur du transport cationique, module négativement la cinétique du PTE par rapport au groupe témoin en plus de retarder la réépithélialisation de la plaie.
3

Fonction de la Dual leucine-zipper protéine kinase DLK dans la différenciation des kératinocytes épidermiques

Robitaille, Hubert 13 April 2018 (has links)
La différenciation épidermique est un processus complexe qui requiert une régulation fine, chronologique et précise. La régulation de ce processus de différenciation dépend d'un grand nombre de voies de signalisation et d'activateurs qui doivent intervenir à des moments précis. Les différents processus et acteurs moléculaires qui sont impliqués dans la différenciation des kératinocytes sont encore mal connus. Étant donné la complexité de ce programme de différenciation, la mise en lumière de ces processus moléculaires revêt un grand défi. La DLK est un élément régulateur potentiel du processus de cornification des kératinocytes puisqu'elle n'est exprimée que dans les cellules les plus différenciées de l'épiderme. L'expression de DLK dans des kératinocytes humains normaux peu différenciés à l'aide d'un système adénoviral de transfert de gènes a révélé un rôle clé de DLK dans la différenciation épidermique. Cette expression de DLK engendre en effet divers processus primordiaux à la phase tardive de la différenciation des kératinocytes comme l'expression de la filaggrine, l'activation de la transglutaminase, l'accumulation de la protéine p21 cipl/WAFl et la dégradation de l'ADN. La différenciation épidermique s'accompagne également de l'expression de protéines de la famille des Hsp, entre autres la Hsp 27. L'expression de DLK dans des kératinocytes normaux humains entraîne la colocalisation de Hsp 27 avec l'enveloppe cornée ainsi que son insolubilisation, un phénomène observé dans la phase tardive de la différenciation épidermique. Finalement, le calcium est un important régulateur de la différenciation des kératinocytes. L'augmentation du niveau de calcium intracellulaire engendre une augmentation de l'activité de DLK et une re-localisation aux membranes tel qu'observé dans la couche granuleuse de l'épiderme. La localisation membranaire de DLK est aussi un reflet de son rôle important dans la cornification des kératinocytes. Ces travaux montrent donc le rôle important de DLK dans la différenciation épidermique. Ainsi, ils ont permis d'identifier un nouveau régulateur de ce programme de différenciation terminale.
4

Rôle des mélanocytes dans l'unité épidermique de mélanisation reconstruite ex-vivo après une irradiation UV aiguë

Cario-Andre, Muriel 23 November 2000 (has links) (PDF)
Le rôle du mélanocyte dans la pigmentation de la peau n'est plus a démontré, par contre son rôle photoprotectif est controversé. Le rôle du mélanocyte a été étudié en comparant des épidermes reconstruits avec 100 % de kératinocytes et des épidermes reconstruits avec 95 % de kératinocytes et 5 % de mélanocytes. Dans un premier temps, l'effet d'une irradiation UVB aiguë a été étudié sur ces deux types de reconstructions, puis l'étude a été élargie aux effets des UVA et des UVA+B. Ces études ont permis de montrer, qu'après irradiation, la présence de mélanocytes au sein de l'épiderme reconstruit prévient l'apoptose sans pour autant protéger de façon significative de la formation des lésions directes de l'ADN (CPD et 6-4PP) et permet le maintien du rapport SOD/Catalase (principales enzymes antioxydantes). Par contre, la présence de mélanocytes au sein de l'épiderme amplifie les oxydations lipidiques et protéiques UV-induites mais semble prévenir l'oxydation de l'ADN. Les mélanocytes possèdent en plus de la mélanine, une plus grande concentration en acides gras polyinsaturés membranaires que les kératinocytes. Afin d'estimer quelle est la part de la mélanine et quelle est celle des acides gras polyinsaturés mélanocytaires dans les réponses UV-induites, des épidermes reconstruits avec des kératinocytes ont été suppléméntés avec des acides gras polyinsaturés. Cette étude a permis de mettre en évidence que ce sont les acides gras qui induisent l'amplification des oxydations lipidiques et protéiques alors que la mélanine protège l'ADN de l'oxydation induite par la lipoperoxydation. Ces différentes études ont également permis de montrer que face aux UV, l'épiderme reconstruit se comporte de façon similaire à l'épiderme normal in-vivo. Dans un dernier temps, des crèmes solaires et des antioxydants systémiques ont été testés et ont permis de confirmer que le modèle d'épiderme reconstruit est tout à fait adapté au test de molécules photoprotectrices.
5

Rôle de CD98hc dans les fibroblastes dermiques au cours de l’homéostasie et de la tumorigenèse cutanées / Role of dermal CD98hc during skin homeostasis and carcinogenesis

Tissot, Floriane 18 December 2017 (has links)
L’interaction épithélium/mésenchyme est cruciale pour de nombreux processus physiopathologiques. Lors de ma thèse, je me suis intéressée aux signaux mésenchymateux régulant les cellules épithéliales en utilisant comme modèle la peau, qui est composée de 2 compartiments : l’épiderme (épithélium) et le derme (mésenchyme). Les intégrines sont impliquées ces interactions. CD98hc est une protéine transmembranaire à double fonction qui chaperonne des transporteurs d’acides aminés et régule la signalisation des ß intégrines. Elle est exprimée dans les cellules prolifératives telle les cellules épithéliales. Dans la peau, CD98hc est exprimée l’épiderme mais également dans les fibroblastes, cellules post-mitotiques. Mon hypothèse a été que CD98hc participe aux régulations des interactions derme/épiderme. Grâce à un modèle de KO conditionnel de CD98hc dans les fibroblastes dermiques, j’ai mis en évidence que CD98hc permet le maintient des propriétés mécaniques et biologiques du derme, et, de ce fait, régule l’épiderme en conditions d’homéostasie, de perturbation de la barrière et lors de la formation de cancer. De plus, le rôle de CD98hc dans cette interaction apparait comme étant lié à l’âge. En conclusion, mes travaux de thèse montrent le rôle central de l’expression dermique de CD98hc dans le maintien de l’homéostasie cutanée au cours du vieillissement ainsi que lors de la tumorigenèse. / The epithelial/mesenchymal interaction is crucial for many physiopathological processes. During my PhD, I focused on mesenchymal signals that regulate epithelial cells behavior using the skin as model. The skin is composed of 2 main compartments: the epidermis (epithelium) and the dermis (mesenchyme). While this crosstalk involves integrins, its regulations are poorly understood. The transmembrane protein CD98hc interacts with amino acid transporter and regulates integrin signaling. CD98hc which is expressed at the cell membrane of proliferative cells, specifically epithelial cells, is required for tissue homeostasis. We found that besides its expression in keratinocytes, CD98hc is also expressed in post-mitotic dermal fibroblast. Hence, I hypothesized that CD98hc is involved in epidermis/dermis crosstalk. Using a conditional KO mouse model that harbor a CD98hc deletion in dermal fibroblast, I have shown that dermal CD98hc is required to maintain mechanical and biochemical properties of the dermis. Moreover, I have shown that those CD98hc-dependent dermal properties are implicated in the regulation of the epidermal cell behavior during homeostasis, cutaneous barrier disruption and tumorigenesis. Moreover, the role of CD98hc in those processes seems to be age-related. To conclude, during my PhD, I have revealed a major role of CD98hc in the maintenance of skin homeostasis during aging and tumorigenesis.
6

Effets d'un dextran substitué sur la production de feuillets dermiques et du gel de fibrine sur la qualité des feuillets d'épidermes cultivés

Boucher, Éric 12 April 2018 (has links)
L'utilisation de la dispase pour détacher les feuillets épidermiques est une étape pouvant être améliorée pour faciliter leurs transferts sur les plaies des grands brûlés. La culture sur colle de fibrine élimine cette étape. Les analyses histologiques et immunohistochimiques n'ont révélé aucune différence importante entre ces deux types de feuillets épidermiques. Le gel de fibrine est donc un substrat adéquat pour la production de feuillets épidermiques greffables. / Les équivalents cutanés complets complèteraient le traitement des grands brûlés. Toutefois, la production de feuillets dermiques est limitée par leur temps de production. Étant donné que le RGTA accélère la réparation de plusieurs tissus in vivo, l'effet du RGTA sur la production de feuillets dermiques fut testé. Des examens physiques et histologiques ont montré que le RGTA26 rendait les feuillets fragiles. Les ELISAs et les zymogrammes ont montré une modulation de la production collagénique et des MMPs. L'utilisation du RGTA pour produire les feuillets dermiques n'apparaît pas justifié.
7

Les champs électriques et les kératinocytes humains : analyse des mécanismes d'action et du potentiel trans-épithélial sur les peaux humaines reconstruites par génie tissulaire

Dubé, Jean 17 April 2018 (has links)
L'épiderme humain contient une pile physiologique dont le potentiel varie de 10 à 60 mV en fonction de la localisation sur le corps. Un gradient sodique décroissant de la couche basale jusqu'en dessous de la couche cornée est maintenu par l'action de pompes ioniques créant ainsi une différence de potentiel trans-épithélial (PTE). En condition normale, aucun rôle physiologique n'a encore été attribué à ce potentiel. Lorsque la peau est endommagée, une fuite d'ions provenant de la rupture du gradient sodique induit un champ électrique endogène (100 à 200 raV/mm) en bordure de la plaie. Le champ électrique endogène est dirigé vers le centre de la plaie. Il a été suggéré que la présence d'un champ électrique endogène est importante dans la réépithélialisation des plaies. Toutefois, les mécanismes d'action de celui-ci demeurent peu connus. Les recherches actuelles sur le sujet sont davantage orientées sur les effets des champs électriques sur la guérison des plaies et très peu concernent le rôle du PTE. Pourtant, c'est la présence du PTE présent dans la peau intacte entourant la plaie qui permet l'induction du champ électrique endogène à la suite d'une blessure. Notre objectif général était d'évaluer les effets de champs électriques d'intensités physiologiques sur les kératinocytes en monocouches et d'étudier la formation du PTE lors de la réépithélialisation de l'épiderme. Tout d'abord, nous avons étudié la réponse cellulaire des kératinocytes en présence de champs électriques par la mesure de la variation du calcium intracellulaire (Ca2+j) avec la sonde fluorescente fluo-4. Les variations de la fluorescence en fonction du temps ont été enregistrées à l'aide d'un système d'observation microscopique en continu. Nos résultats montrent que la stimulation de kératinocytes avec des intensités de champ électrique d'ordre physiologique et supraphysiologique (100 à 900 mV/mm) produit une élévation du taux de Ca2+; et que l'ampleur de cette réponse dépend de l'intensité du champ électrique appliqué. Nous avons également noté que les variations de Ca2+j observées suite à une stimulation électrique sont spécifiques aux kératinocytes peu différenciés. Ces résultats montrent pour la première fois que la stimulation électrique de kératinocytes humains en colonies induit une augmentation de Ca2+j et que cette réponse cellulaire est dépendante du niveau de différenciation des cellules. L'étude du PTE est complexe puisqu'elle nécessite un modèle d'étude en trois dimensions représentant l'épiderme humain. À l'aide du modèle de peau reconstruite ii humaine (PRH) par génie tissulaire développée au LOEX, nous avons étudié la formation du PTE lors de la genèse et de la réépithélialisation de l'épiderme. Tout d'abord, nous avons élaboré un système adapté pour les mesures du PTE sur des PRH et sur un modèle animal de plaies cutanées. Des mesures du PTE ont ensuite été réalisées sur des PRH et des biopsies ont été réalisées sur les épidémies en formation ainsi que sur les plaies en fonction du temps. Nos résultats montrent que le PTE varie durant la formation de l'épiderme. Cette période est composée d'une phase ascendante et suivie d'une phase descendante. Une période similaire de rétablissement du PTE a également été observée durant la réépithélialisation de plaies sur notre modèle de PRH et ces observations ont été corrélées in vivo sur un modèle de plaie cutanée chez le porc. La période du PTE a également été corrélée avec l'expression variable (ascendante et descendante) de la pompe Na+/K+ ATPase en fonction du temps et en fonction de la différenciation de l'épiderme. Ces résultats suggèrent que les pompes Na+/K+ ATPase régleraient le transport des ions sodiques pour l'établissement du PTE durant la formation ainsi qu'au cours de la réépithélialisation de l'épiderme. L'ensemble des résultats procure une meilleure compréhension des mécanismes reliés au champ électrique endogène et au potentiel transmembranaire dans la peau humaine.
8

Le tégument des vertébrés et la spécification de l'épithélium cornéen

Collomb, Elodie 17 December 2010 (has links) (PDF)
Le tégument est formé de deux tissus, un épithélium et un mésenchyme. Il comprend la peau et la cornée. Au niveau de la face, ces derniers ont une origine embryonnaire commune: ectoderme et cellules des crêtes neurales. J'ai tout d'abord contribué à la mise en évidence de l'acquisition par le derme embryonnaire de ses capacités inductrices sur l'épiderme, et de l'indépendance de la différenciation de l'épithélium cornéen vis-à-vis de son mésenchyme, le stroma. Mes travaux principaux ont été d'établir quelle était la signature moléculaire du programme cornéen, et à quel moment et comment ce programme est mis en place chez l'embryon. La comparaison des transcriptomes des cellules souches de la cornée à celui des cellules souches épidermiques chez la souris montre 3621 gènes communs et 1768 gènes cornéens propres, en plus de Pax6, le gène clé de l'oeil, et de K12, la kératine type de la différenciation terminale de l'épithélium cornéen. La cornée résultant, selon un dogme ancien, d'une induction par le cristallin, j'ai effectué des expériences chez l'embryon de poulet de 2 jours afin de le vérifier. L'ablation chirurgicale de la placode cristallinienne ayant mis en évidence sa régénération, j'ai prévenu sa formation en électroporant Gremlin, un inhibiteur de BMP4, requis lors la spécification du cristallin par la vésicule optique. L'obtention d'oeil sans cristallin mais avec un épithélium cornéen exprimant K12 montre que le programme cornéen s'effectue par défaut lorsque le programme cristallinien est interrompu. Cet arrêt se produit normalement à la périphérie de la placode cristallinienne qui s'invagine, lors de la migration des cellules des crêtes neurales, productrices de Gremlin. Les précurseurs de l'épithélium cornéen sont donc communs avec ceux du cristallin, qui sont connus pour se ségréger chez l'embryon lors de la formation du domaine préplacodal au stade neurula.
9

Caractérisation spectroscopique et thermodynamique de l'organisation des lipides du Stratum Corneum

Arseneault, Marjolaine January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
10

Etude de la réponse des cellules souches épidermiques aux stress génotoxiques radiatifs / Epidermal stem cells response to radiative genotoxic stress

Marie, Mélanie 19 February 2013 (has links)
La peau étant le premier tissu exposé aux diverses agressions de l’environnement extérieur, les cellules qui la composent doivent disposer de mécanismes de protection vis-à-vis de ces agressions, afin d’assurer le maintien de l’homéostasie tissulaire. Les cellules souches de l’épiderme assurant le renouvellement du compartiment épithélial pendant toute la vie de l’individu, la préservation de l’intégrité de leur génome est essentielle à la fonctionnalité pérenne de la peau. Mon doctorat avait pour objectif d’explorer les mécanismes mis en œuvre par les cellules souches de l’épiderme interfolliculaire afin de se protéger de deux stress génotoxiques radiatifs, à savoir : les rayonnements gamma et les rayonnements ultraviolets B (UVB). Durant mon doctorat, j’ai tout d’abord participé à la démonstration des mécanismes de protection mis en œuvre par les cellules souches des kératinocytes après irradiation ionisante. En effet, il a été montré que ces cellules sont capables de réparer très rapidement l’ensemble des dommages de l’ADN radio-induits, et que cette réparation était activée par le facteur de croissance FGF2 (Fibroblast Growth Factor 2). Afin de savoir si ce mécanisme de protection était aussi opérant dans les cellules souches de carcinome cutané, nous l’avons recherché dans la sous-population de cellules souches qui peut être isolée d’une lignée de carcinome cutané humain. Comme dans le cas des cellules souches normales, nous avons montré que les cellules souches de cancer présentent une réparation très rapide des dommages de l’ADN radio-induits. De plus, le facteur de croissance FGF2 participe à cette réparation, notamment par la présence d’isoformes de ce facteur dans le noyau cellulaire. Le second projet de mon doctorat avait pour objectif l’étude de la réponse des cellules souches et des progéniteurs de l’épiderme humain aux rayonnements UVB. Une fois mises en place les conditions de tri en cytométrie de flux et d’irradiation par les UVB, la toxicité de ces rayonnements a été évaluée dans un modèle cellulaire primaire. Nous avons caractérisé les effets des photons UVB sur la viabilité et la prolifération cellulaire et étudié la réparation des dommages de l’ADN. Cette étude nous a permis de mettre en évidence des réponses aux UVB différentes entre les cellules souches et leur descendance immédiate, les kératinocytes progéniteurs, notamment au niveau de l’activité de réparation des dommages de l’ADN. Par ailleurs, une étude du transcriptome des cellules irradiées a été réalisée, qui permet d’analyser les mécanismes globaux communs et spécifiques de réponse au stress dans les deux populations. L’ensemble des données obtenues nous permet de proposer plusieurs mécanismes de protection, communs et spécifiques, mis en œuvre par les cellules souches de l’épiderme en réponse aux stress radiatifs UVB et gamma. / Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation ( Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global mechanisms of stress response in the two cell populations. Taken together, data obtained during my PhD allowed us to show that stem cells respond differently than keratinocyte progenitors to radiation stress, and that they developed both intrinsic and radiation-induced strategies allowing a better protection. When comparing gamma Rays and UVB, we found that, although their toxic effects on skin share many similarities, the mechanisms set up by human epidermal stem cells to protect themselves vary according to the type of radiation stress.

Page generated in 0.0343 seconds