• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 43
  • 11
  • Tagged with
  • 153
  • 153
  • 68
  • 52
  • 51
  • 48
  • 38
  • 32
  • 30
  • 30
  • 29
  • 26
  • 26
  • 25
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sur les propriétés de superconvergence des solutions approchées de certaines équations intégrales et différentielles

Lebbar, Rachid 29 September 1981 (has links) (PDF)
La solution projection itérée pour l'équation intégrale de Fredholm de seconde espèce. Résultats de superconvergence pour la methode de projection itérée appliquée à une équation intégrale de Fredholm de 2ème espèce et problème aux valeurs propres. Résultats de superconvergence pour des problèmes aux valeurs propres différentiels : une methode de Galerkin sur la formulation intégrale. Superconvergence des vecteurs propres généralisés d'opérateurs différentiels et intégraux aux nœuds.
12

Linéarisation dynamique des systèmes non linéaires et paramétrage de l´ensemble des solutions

Avanessoff, David 08 June 2005 (has links) (PDF)
Dans cette thèse, nous nous sommes intéressés à la possibilité de paramétrer<br />toutes les solutions d´un système de contrôle ou système sous-déterminé par des formules dépendant de fonctions arbitraires du temps et de leurs dérivées jusqu´à un certain ordre. Après avoir lié cette problématique à la problématique plus connue en contrôle de la recherche de sorties plates, nous nous sommes intéressés a deux points de vue.<br />Le premier point de vue est une étude en petites dimensions qui nous amène à des conditions nécessaires et suffisantes pour paramétrer un système de contrôle en termes d´intégrabilité d´un système d´équation aux dérivees partielles simple´´.<br />Pour le deuxième point de vue nous considérons des dimensions quelconques et nous<br />présentons un outil pour l´étude des sorties plates et des conditions<br />nécessaires qu´elles vérifient. Un premier résultat est l´integrabilité très<br />formelle´´, notion qui est définie au préalable, des équations vérifiées par<br />ces sorties plates.
13

Equations différentielles stochastiques rétrogrades à croissance quadratique et applications

Morlais, Marie-Amélie 12 October 2007 (has links) (PDF)
Dans cette thèse, l'étude menée consiste à établir de nouveaux résultats théoriques concernant des problèmes d'existence et d'unicité pour des Equations Différentielles Stochastiques Rétrogrades (EDSR) à croissance quadratique : ceci a pour but de permettre la résolution d'un problème de Mathématiques Financières, à savoir la maximisation de l'utilité (exponentielle) d'un portefeuille sous contraintes. Généralisant des résultats déjà connus en filtration brownienne pour les EDSR quadratiques, ce travail permet ainsi d'apporter des réponses au problème financier dans des contextes plus généraux.
14

Wavelets in Scientific Computing

Nielsen, Ole Møller 15 March 1998 (has links) (PDF)
Waveletteori er en forholdsvis ny matematisk disciplin, som har vakt stor interesse indenfor b°ade teoretisk og anvendt matematik i løbet af det seneste °arti. De altafgørende egenskaber ved wavelets er at de kan analysere forskellige dele af en funktion p°a forskellige skalatrin, samt at de kan repræsentere polynomier nøjagtigt op til en given grad. Dette fører til, at funktioner med hurtige oscillationer eller singulariteter indenfor lokaliserede omr°ader kan approksimeres godt med en linearkombination af forholdsvis f°a wavelets. Til sammenligning skal man medtage mange led i en Fourierrække for at opn°a en god tilnærmelse til den slags funktioner. Disse egenskaber ved wavelets har med held været anvendt indenfor signalbehandling. Denne afhandling omhandler wavelets rolle indenfor scientific computing og den best°ar af tre dele: Del I giver en gennemgang af teorien for ortogonale, kompakt støttede wavelets med udgangspunkt i multiskala analyse. S°adanne wavelets er særligt attraktive, fordi de giver anledning til en stabil og særdeles effektiv algoritme, kaldet den hurtige wavelet transformation (FWT). Vi giver estimater for approksimationsegenskaberne af wavelets og demonstrerer, hvordan og hvorfor FWT-algoritmen kan bruges som første led i en effektiv billedkomprimerings metode. Del II omhandler forskellige implementeringer af FWT algoritmen p°a vektorcomputere og parallelle datamater. Vi udvikler en effektiv og skalerbar parallel FWT algoritme og angiver en model for dens ydeevne. Del III omfatter et studium af mulighederne for at bruge wavelets særlige egenskaber til at løse partielle differentialligninger numerisk. Flere forskellige tilgange identificeres og to af dem beskrives detaljeret. De udviklede algoritmer anvendes p°a den ikke-lineære Schr¨odinger ligning og Burgers ligning. Numeriske undersøgelser viser, at algoritmerne kan være effektive under forudsætning af at problemerne er store, at løsningerne er stærkt lokaliserede og at de forskellige numeriske metode-parametre kan vælges p°a passende vis afhængigt af det p°agældende problem.
15

Sur la théorie des dérivées hyperboliques

Rivard, Patrice 18 April 2018 (has links)
La notion de dérivée hyperbolique est bien connue en théorie géométrique des fonctions et s'applique aux fonctions appartenant à la classe, dite de Schur, des fonctions / qui sont analytiques dans le disque unité ED := {z : \z\ < 1} et telles que \f(z)\ < 1 pour tout 2 _D. Une fonction appartenant à cette classe est appelée une fonction de Schur. Le but principal de cette thèse est de présenter une nouvelle théorie, celle des dérivées hyperboliques d'ordre supérieur d'une fonction de Schur. Dans ce nouveau contexte, la dérivée hyperbolique précédente est maintenant considérée comme la dérivée hyperbolique d'ordre un. Différentes applications de ces nouvelles dérivées seront explorées et nous aborderons, notamment, des problèmes d'interpolation : étant donnés des points distincts dans le disque unité, on veut déterminer les fonctions de Schur qui font correspondre ces points vers des points images aussi donnés, tout en ayant des dérivées prescrites aux points initiaux. Nous nous intéresserons à ces problèmes d'interpolation exprimés en termes des dérivées hyperboliques plutôt qu'en termes des dérivées classiques. De plus, certains résultats classiques de l'analyse complexe seront considérés dans le contexte des dérivées hyperboliques. D'une part, cela permettra de les généraliser dans certains cas et, d'autre part, d'interpréter certains d'entre eux en vertu des dérivées hyperboliques, fournissant ainsi des démonstrations plus géométriques de ces résultats. En particulier, une version du théorème de Schwarz-Pick sera donnée pour les dérivées hyperboliques d'ordre supérieur et également une version analogue du lemme de Dieudonné. Finalement, le cas du lemme de Rogosinski sera aussi traité et nous en donnerons une démonstration différente en utilisant les nouveaux outils développés dans cette thèse.
16

Dynamique markovienne ternaire cyclique sur graphes et quelques applications en biologie mathématique

Painchaud, Vincent 13 December 2023 (has links)
La modélisation de phénomènes biologiques qui impliquent un très grand nombre d'unités pose toujours un défi. De nombreux modèles présentent une vision globale de la dynamique moyenne du phénomène sous la forme d'un système d'équations différentielles ordinaires. C'est le cas notamment du modèle de Wilson-Cowan, qui décrit l'activité qui se propage dans un réseau de neurones biologiques. Une limite importante de ce modèle est qu'il néglige d'éventuelles corrélations entre les états de différents neurones. L'objectif premier de ce mémoire est ainsi de le généraliser afin de décrire de telles corrélations. On veut aussi mieux en comprendre les fondements mathématiques et les liens qu'il a avec des modèles semblables utilisés en épidémiologie et en écologie. Pour s'attaquer à ce problème, on construit une chaîne de Markov en temps continu qui décrit l'évolution des états des nœuds d'un graphe, et qui peut ainsi modéliser un phénomène biologique d'un point de vue microscopique. Étant donné le très grand nombre de nœuds que comporte le graphe, ce modèle microscopique est difficile à analyser. À partir du processus stochastique, on obtient alors par un moyennage un système d'équations différentielles ordinaires afin de décrire la dynamique sur le graphe d'un point de vue macroscopique. Deux applications de cette méthode sont alors présentées : l'une en épidémiologie et l'autre en neurosciences. On se concentre particulièrement sur l'application en neurosciences, qui permet de décrire la dynamique d'un réseau de neurones biologiques et de généraliser le modèle de Wilson-Cowan. En effet, on arrive à proposer deux nouveaux systèmes qui sont des extensions de ce modèle, puisqu'elles permettent de considérer des corrélations entre les états de différents neurones. On présente finalement un exemple dans lequel le comportement dynamique de l'une de ces extensions est plus près du comportement du processus stochastique que celui du modèle de Wilson-Cowan. / Modeling biological phenomena that involve a very large number of individual units is always a challenge. In this context, many models consist in a system of ordinary differential equations that gives an overview of the mean dynamics of a phenomenon. Among these is the Wilson-Cowan model, which describes the activity of a biological neural network. An important weakness of this model is that it neglects all possible correlations between the states of different neurons. The main goal of this thesis is to generalize Wilson-Cowan's model to describe such correlations. We also seek to get a better understanding of its mathematical foundations, as well as its links with other models used in epidemiology and ecology. To tackle this problem, we construct a continuous-time Markov chain to describe the evolution of the states of the nodes of a large graph. Such a process can then model a biological phenomenon from a microscopic point of view. Since the size of the graph is very large, this microscopic model is hard to analyze. Hence, from the stochastic process, we use an averaging method to obtain a system of ordinary differential equations which describes the dynamics on the graph from a macroscopic point of view. We show two applications of this method : one in epidemiology and the other in neuroscience. We focus on the application in neuroscience, which leads to a description of the dynamics a biological neural network and generalizes Wilson-Cowan's model. Indeed, we introduce two new systems which are extensions of this model since they can describe correlations between the states of different neurons. Finally, we present an example where the behavior of the stochastic process is closer to the dynamical behavior of one of the extensions than that of Wilson-Cowan's model.
17

Modélisation mathématique du rôle et de la dynamique temporelle de la protéine p53 après dommages à l'ADN induits par les médicaments anticancéreux / Mathematical model of the role and temporal dynamics of protein p53 after drug-induced DNA damage

Elias, Jan 01 September 2015 (has links)
Plusieurs modèles pharmacocinétiques-pharmacodynamiques moléculaires ont été proposés au cours des dernières décennies afin de représenter et de prédire les effets d'un médicament dans les chimiothérapies anticancéreuses. La plupart de ces modèles ont été développés au niveau de la population de cellules, puisque des effets mesurables peuvent y être observés beaucoup plus facilement que dans les cellules individuelles.Cependant, les véritables cibles moléculaires des médicaments se trouvent au niveau de la cellule isolée. Les médicaments utilisés soit perturbent l'intégrité du génome en provoquant des ruptures de brins de l'ADN et par conséquent initialisent la mort cellulaire programmée (apoptose), soit bloquent la prolifération cellulaire, par inhibition des protéines (cdks) qui permettent aux cellules de procéder d'une phase du cycle cellulaire à la suivante en passant par des points de contrôle (principalement en $G_1/S$ et $G_2/M$). Les dommages à l'ADN causés par les médicaments cytotoxiques ou la $\gamma$-irradiation activent, entre autres, les voies de signalisation contrôlées par la protéine p53 qui forcent directement ou indirectement la cellule à choisir entre la survie et la mort.Cette thèse vise à explorer en détail les voies intracellulaires impliquant la protéine p53, ``le gardien du génome", qui sont initiées par des lésions de l'ADN, et donc de fournir un rationnel aux cancérologues pour prédire et optimiser les effets des médicaments anticancéreux en clinique. Elle décrit l'activation et la régulation de la protéine p53 dans les cellules individuelles après leur exposition à des agents causant des dommages à l'ADN. On montre que les comportements dynamiques qui ont été observés dans les cellules individuelles peuvent être reconstruits et prédits par fragmentation des événements cellulaires survenant après lésion de l'ADN, soit dans le noyau, soit dans le cytoplasme. Ceci est mis en œuvre par la description du réseau des protéines à l'aide d'équations différentielles ordinaires (EDO) et partielles (EDP) impliquant plusieurs agents dont les protéines ATM, p53, Mdm2 et Wip1, dans le noyau aussi bien que dans le cytoplasme, et entre les deux compartiments. Un rôle positif de Mdm2 dans la synthèse de p53, qui a été récemment observé, est exploré et un nouveau mécanisme provoquant les oscillations de p53 est proposé. On pourra noter en particulier que le nouveau modèle rend compte d'observations expérimentales qui n'ont pas pu être entièrement expliquées par les modèles précédents, par exemple, l'excitabilité de p53.En utilisant des méthodes mathématiques, on observe de près la façon dont un stimulus (par exemple, une $\gamma$-irradiation ou des médicaments utilisés en chimiothérapie) est converti en un comportement dynamique spécifiques (spatio-temporel) de p53, en particulier que ces dynamiques spécifiques de p53, comme messager de l'information cellulaire, peuvent moduler le cycle de division cellulaire, par exemple provoquant l'arrêt du cycle ou l'apoptose. Des modèles mathématiques EDO et EDP de réaction-diffusion sont utilisés pour examiner comment le comportement (spatio-temporel) de p53 émerge, et nous discutons des conséquences de ce comportement sur les réseaux moléculaires, avec des applications possibles dans le traitement du cancer.Les interactions protéine-protéine sont considérées comme des réactions enzymatiques. On présente quelques résultats mathématiques pour les réactions enzymatiques, en particulier on étudie le comportement en temps grand du système de réaction-diffusion pour la réaction enzymatique réversible à l'aide d'une approche entropique. À notre connaissance, c'est la première fois qu'une telle étude est publiée sur ce sujet. / Various molecular pharmacokinetic–pharmacodynamic models have been proposed in the last decades to represent and predict drug effects in anticancer therapies. Most of these models are cell population based models since clearly measurable effects of drugs can be seen on populations of (healthy and tumour) cells much more easily than in individual cells.The actual targets of drugs are, however, cells themselves. The drugs in use either disrupt genome integrity by causing DNA strand breaks and consequently initiate programmed cell death or block cell proliferation mainly by inhibiting proteins (cdks) that enable cells to proceed from one cell cycle phase to another. DNA damage caused by cytotoxic drugs or $\gamma$-irradiation activates, among others, the p53 protein-modulated signalling pathways that directly or indirectly force the cell to make a decision between survival and death.The thesis aims to explore closely intracellular pathways involving p53, ``the guardian of the genome", initiated by DNA damage and thus to provide oncologists with a rationale to predict and optimise the effects of anticancer drugs in the clinic. It describes p53 activation and regulation in single cells following their exposure to DNA damaging agents. We show that dynamical patterns that have been observed in individual cells can be reconstructed and predicted by compartmentalisation of cellular events occurring either in the nucleus or in the cytoplasm, and by describing protein interactions, using both ordinary and partial differential equations, among several key antagonists including ATM, p53, Mdm2 and Wip1, in each compartment and in between them. Recently observed positive role of Mdm2 in the synthesis of p53 is explored and a novel mechanism triggering oscillations is proposed. For example, new model can explain experimental observations that previous (not only our) models could not, e.g., excitability of p53.Using mathematical methods we look closely on how a stimulus (e.g., $\gamma$-radiation or drugs used in chemotherapy) is converted to a specific (spatio-temporal) pattern of p53 whereas such specific p53 dynamics as a transmitter of cellular information can modulate cellular outcomes, e.g., cell cycle arrest or apoptosis. Mathematical ODE and reaction-diffusion PDE models are thus used to see how the (spatio-temporal) behaviour of p53 is shaped and what possible applications in cancer treatment this behaviour might have. Protein-protein interactions are considered as enzyme reactions. We present some mathematical results for enzyme reactions, among them the large-time behaviour of the reaction-diffusion system for the reversible enzyme reaction treated by an entropy approach. To our best knowledge this is published for the first time.
18

Modèle épidémiologique compartimental à délai pour le virus de la dengue

Bérubé, François 12 1900 (has links)
La dengue est une infection virale qui touche de 100 à 400 millions d'individus chaque année. Selon l'OMS, « la dengue sévère est l’une des principales maladies graves et causes de décès dans certains pays d’Asie et d’Amérique latine ». Il est justifiable de modéliser la propagation de cette maladie dans une population à l'aide de modèles mathématiques compartimentaux. Les travaux de Forshey et al. sur la fièvre dengue semblent indiquer la possibilité qu'une infection à la dengue ne donne pas une immunité à long terme contre les différents sérotypes du virus, et qu'une réinfection homotypique à la dengue serait commune. Nous étudions un modèle SIRS de la dengue qui prend en compte cette perte d'immunité via un système d'équations différentielles à délai. Nous caractérisons les états stationnaires et leur stabilité en termes des différents paramètres considérés, notamment les taux de reproduction de base associés à chacun des sérotypes de la dengue. Nous étudions les bifurcations du système en ses principaux paramètres, notamment les bifurcations de Hopf émergeant de la présence d'un délai dans le système d'équations différentielles. Des simulations numériques du modèle sont présentées afin de représenter les différents régimes du modèle à l'étude. / Dengue is a viral infection affecting from 100 to 400 million people each year. According to the WHO, "severe dengue is a leading cause of serious illness and death in some Asian and Latin American countries". This justifies the modelling of this illness's propagation in a population using mathematical compartmental models. Results of Forshey et al. on dengue fever seem to indicate the possibility that a dengue infection does not yield a long term immunity against the different dengue serotypes, and that an homotypical reinfection could be common. We study a SIRS model for the dengue virus that takes into account this loss of immunity via a system of delay differential equations. We characterize the stationary states and their stability in terms of the different parameters considered, in particular the basic reproduction ratios associated to each dengue serotype. We study the system's bifurcations in its main parameters, especially the Hopf bifurcations arising from the presence of a delay in the system of differential equations. Numerical simulations of the model are presented to represent the model's different regimes.
19

Sur l'estimation de paramètres dans les modèles différentiels stochastiques multidimensionnels

Le Breton, Alain 08 September 1976 (has links) (PDF)
Estimation des paramètres d'un modèle stochastique à coefficients dépendant linéairement, puis non linéairement, des paramètres inconnus, au vu de l'observation, en temps continu ou en temps discret, d'une seule trajectoire du processus qu'il engendre.
20

Méthodes de Runge-Kutta-Fehlberg

Laplace, André 26 June 1969 (has links) (PDF)
.

Page generated in 0.1481 seconds