• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 104
  • 43
  • 11
  • Tagged with
  • 153
  • 153
  • 68
  • 52
  • 51
  • 48
  • 38
  • 32
  • 30
  • 30
  • 29
  • 26
  • 26
  • 25
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Application of stochastic differential equations and Monte Carlo approaches to the modeling of the neurotransmitters diffusion in the synaptic cleft

Li, Xiaoting 26 March 2024 (has links)
Titre de l'écran-titre (visionné le 10 octobre 2023) / Cette thèse porte sur l'utilisation de différents outils mathématiques pour décrire la transmission synaptique. Le but de mon travail est double. Sur le plan biologique, j'ai effectué des simulations pour aider à mieux comprendre la transmission synaptique, en particulier le rôle des nanocolonnes dans la formation du courant synaptique. Les nanocolonnes sont des structures sous-microscopiques qui alignent les récepteurs postsynaptique et les vésicules présynaptiques. Étant donné qu'il est très difficile d'étudier expérimentalement les nanocolonnes, la modélisation mathématique devient un outil important pour mieux comprendre leur rôle et leur fonction. Cette partie de mon travail m'a amenée à publier un article de recherche dans la revue Frontiers in Comuptational Neuroscience intitulé "Computational modeling of trans-synaptic nanocolumns, a modulator of synaptic transmission". Dans cet article, nous montrons à travers des simulations mathématiques que les nanocolonnes pourraient jouer un rôle dans le renforcement des courants synaptiques dans les synapses de petites tailles. Le deuxième objectif de cette thèse est d'étudier différents outils mathématiques qui pourraient a priori être utilisés pour décrire la transmission synaptique. Une étape importante de la transmission synaptique est la diffusion des neurotransmetteurs dans la fente synaptique. D'un point de vue mathématique, une approche courante consiste à considérer la concentration des neurotransmetteurs comme une quantité continue et à décrire son évolution en résolvant l'équation de la chaleur. Dans le chapitre 1 de cette thèse, je discute des solutions et de l'approximation des solutions des équations de la chaleur sur des domaines cylindriques avec différentes conditions limites. Une approche plus précise est de décrire le mouvement des neurotransmetteurs individuels par une marche aléatoire. C'est cette méthode que j'ai utilisée dans mon article de recherche. Bien que plus précise, la description du mouvement des neurotransmetteurs individuels par des marches aléatoires est également plus coûteuse en calcul. De plus, étant donné la nature stochastique des simulations, une seule réalisation ne donnera qu'un résultat possible alors que de multiples simulations sont essentielles pour avoir une idée de la distribution des solutions. Cela peut être réalisé grâce à une approche Monte Carlo. Les marches aléatoires seront abordées dans le chapitre 3 de la thèse. Une troisième approche mathématique possible consiste à utiliser des équations différentielles stochastiques pour décrire le mouvement brownien des neurotransmetteurs. Les équations différentielles stochastiques ont l'avantage que leur solution fournit une distribution à partir de laquelle on peut déduire la probabilité d'une réalisation donnée. Cependant, les équations différentielles stochastiques sont généralement plus difficiles à résoudre et constituent un objet mathématique délicat à manipuler. Les équations différentielles stochastiques et la façon dont elles peuvent être appliquées à la description de la diffusion des neurotransmetteurs dans la synapse sont discutées au chapitre 2. / This thesis focuses on using different mathematical tools to describe synaptic transmission. The goal of my work is twofold. On the biological side, I performed simulations to help to better understand synaptic transmission, in particular the role of nanocolumns in shaping synaptic current. Nanocolumns are submicroscopic structures which align the postsynaptic receptors with the presynaptic vesicles. Given that it is very difficult to investigate experimentally nanocolumns, mathematical modeling becomes an important tool to better understand their role and function. This part of my work led me to publish a research paper in the journal Frontiers in Computational Neuroscience entitled "Computational modeling of trans-synaptic nanocolumns, a modulator of synaptic transmission" . In this research paper, we show through mathematical simulations that nanocolumns could play a role in reinforcing synaptic currents in weak synapses. The second goal of this thesis is to investigate different mathematical tools that could a priori be used to describe synaptic transmission. An important step in synaptic transmission is the diffusion of neurotransmitters in the synpatic cleft. From a mathematical standpoint, a common approach is to consider the concentration of neurotransmitters as a continuous quantity and to describe its evolution by solving the heat equation. In Chapter 1 of this thesis, I discuss solutions and approximation of solutions of heat equations on cylindrical domains with different boundaries conditions. A more accurate way to describe the movement of the neurotransmitters in the synaptic cleft is to describe the movement of individual neurotransmitters by a random walk. This second approach is the one I used in my research paper. While more accurate, the description of the movement of individual neurotransmitters by random walks is also more computationally expensive. Furthermore, given the stochastic nature of the simulations in this approach, a single realization will only give a possible outcome while performing multiple simulations is essential to get an idea of the distribution of solutions. This can be achieved through a Monte Carlo approach. Random walks will be discussed in chapter 3 of the thesis. A third possible mathematical approach is to use stochastic differential equations to describe the Brownian motion of neurotransmitters. Stochastic differential equations have the advantage that their solution provides a distribution from which one can deduce the probability of any given realization. However, stochastic differential are usually more difficult to solve and are a delicate mathematical object to handle. Stochastic differential equations and how they can be applied to the description of neurotransmitter diffusion in the synapse is discussion in chapter 2.
42

Modélisation électrophysiologique et biochimique d'un neurone : CA1 cellule de l'hippocampe

Osseni, Mazid Abiodoun 23 April 2018 (has links)
Ce mémoire présente une nouvelle approche pour la réalisation de modèles biophysiques de neurone. Dans un premier temps, nous avons développé un modèle électrique compartimental selon le formalisme de Hodgkin-Huxley avec le logiciel NEURON. En second lieu, nous avons procédé à la réalisation de la modélisation biochimique avec des systèmes d’équations différentielles représentant des réactions d’action de masse et des réactions enzymatiques. La modélisation biochimique se fait tant dans un modèle par compartiments avec des équations différentielles ordinaires que dans un modèle spatial avec des équations différentielles partielles. VCell nous a permis de réaliser ce type de modélisation. Le modèle hybride développé présente deux points de jonction entre les formalismes des modèles électrique et biochimique pris indépendemment. Au premier point de jonction, les courants calciques calculés avec les équations de type Hodgkin-Huxley sont convertis en concentration d’ions de calcium. Ce calcium est un messager secondaire pour de nombreuses voies de signalisation cellulaire. Une élévation de la concentration de calcium modifie la dynamique des réactions biochimiques. Le deuxième point de jonction est l’impact de l’activité de kinases sur les propriétés électriques de canaux ioniques. Par la phosphorylation, certaines kinases viennent moduler la réponse électrique du neurone. En intégrant tous ces effets biophysiques et biochimiques dans une même méthodologie de modélisation, nous pouvons modéliser des processus cellulaires complexes dans les neurones. Le cross-talk synaptique est un phénomène physiologique observé, qui consiste en une augmentation de l’excitabilité membranaire suite à l’interaction entre les signaux électrique et biochimique et une communication entre les épines dendritiques du neurone. Cette interaction représente un excellent cas d’étude pour développer et valider notre méthodologie. Cette méthodologie porte sur l’interaction entre le calcium, la MAPK et les canaux KV4.2. Le calcium vient activer la MAPK par l’intermédiaire de différentes molécules. La MAPK vient ensuite phosphoryler les canaux KV4.2 qui sont possiblement responsables d’une augmentation observée de l’excitabilité membranaire. / This master’s thesis presents a new modeling technique for biophysical models of individual neurons that integrates their electrical and biochemical behaviors. First of all, we developped an electrical compartmental model. This model is based on the Hodgkin-Huxley formalism and developped in NEURON, a modeling software tool for neuroscience. Then, we developped a biochemical model. This second model is a system of differential equations based on mass action reations and enzymatic reactions. We implemented two versions of this model, one as a compartmental model with ordinary differential equations (ODE) and the other as a spatial model with partial differential equations (PDE). We used the software tool VCell for the biochemical modeling. The hybrid model combining the electrical and biochemical behaviors has two connection points between the electrical and biochemical models. At the first junction, the calcium curents calculated by the Hodgkin-Huxley equations are converted into a concentration of calcium ions. This calcium is a secondary messenger for numerous cellular signaling pathways and a rise of the calcium concentration modifies the biochemical reaction dynamic. The second junction is the kinases activity on the ionic channel electrical properties. Through phosphorylation, the kinases modulate the electrical response of the neuron. By integrating all these biophysical and biochemical effects in the same methodology, we can build a complex cellular process models. The synaptic crosstalk is a physiological event which leads to a local increase of the membrane excitability that is due to the interaction between electrical and biochemical signals. This interaction represents an excellent case study for the development and the validation of our methodology. Our model includes the regulation of calcium, MAPK the channel KV4.2.
43

Evolution de modèles différentiels de systèmes complexes concrets par programmation génétique / Evolution of differential models for concrete complex systems through genetic programming / Evolução de modelos diferenciais para sistemas complexos concretos por programação genética

Santos Peretta, Igor 21 September 2015 (has links)
Un système est défini par les entités et leurs interrelations dans un environnement qui est déterminé par une limite arbitraire. Les systèmes complexes présentent un comportement émergent sans un contrôleur central. Les systèmes concrets désignent ceux qui sont observables dans la réalité. Un modèle nous permet de comprendre, de contrôler et de prédire le comportement du système. Un modèle différentiel à partir d'un système pourrait être compris comme une sorte de loi physique sous-jacent représenté par l'un ou d'un ensemble d'équations différentielles. Ce travail vise à étudier et mettre en œuvre des méthodes pour effectuer la modélisation des systèmes automatisée par l'ordinateur. Cette thèse pourrait être divisée en trois étapes principales, ainsi: (1) le développement d'un solveur numérique automatisé par l'ordinateur pour les équations différentielles linéaires, partielles ou ordinaires, sur la base de la formulation de matrice pour une personnalisation propre de la méthode Ritz-Galerkin; (2) la proposition d'un schème de score d'adaptation qui bénéficie du solveur numérique développé pour guider l'évolution des modèles différentiels pour les systèmes complexes concrets; (3) une implémentation préliminaire d'une application de programmation génétique pour effectuer la modélisation des systèmes automatisée par l'ordinateur. Dans la première étape, il est montré comment le solveur proposé utilise les polynômes de Jacobi orthogonaux comme base complète pour la méthode de Galerkin et comment le solveur traite des conditions auxiliaires de plusieurs types. Solutions à approximations polynomiales sont ensuite réalisés pour plusieurs types des équations différentielles partielles linéaires, y compris les problèmes hyperboliques, paraboliques et elliptiques. Dans la deuxième étape, le schème de score d'adaptation proposé est conçu pour exploiter certaines caractéristiques du solveur proposé et d'effectuer l'approximation polynômiale par morceaux afin d'évaluer les individus différentiels à partir d'une population fournie par l'algorithme évolutionnaire. Enfin, une mise en œuvre préliminaire d'une application GP est présentée et certaines questions sont discutées afin de permettre une meilleure compréhension de la modélisation des systèmes automatisée par l'ordinateur. Indications pour certains sujets prometteurs pour la continuation de futures recherches sont également abordées dans ce travail, y compris la façon d'étendre ce travail à certaines classes d'équations différentielles partielles non-linéaires. / A system is defined by its entities and their interrelations in an environment which is determined by an arbitrary boundary. Complex systems exhibit emergent behaviour without a central controller. Concrete systems designate the ones observable in reality. A model allows us to understand, to control and to predict behaviour of the system. A differential model from a system could be understood as some sort of underlying physical law depicted by either one or a set of differential equations. This work aims to investigate and implement methods to perform computer-automated system modelling. This thesis could be divided into three main stages: (1) developments of a computer-automated numerical solver for linear differential equations, partial or ordinary, based on the matrix formulation for an own customization of the Ritz-Galerkin method; (2) proposition of a fitness evaluation scheme which benefits from the developed numerical solver to guide evolution of differential models for concrete complex systems; (3) preliminary implementations of a genetic programming application to perform computer-automated system modelling. In the first stage, it is shown how the proposed solver uses Jacobi orthogonal polynomials as a complete basis for the Galerkin method and how the solver deals with auxiliary conditions of several types. Polynomial approximate solutions are achieved for several types of linear partial differential equations, including hyperbolic, parabolic and elliptic problems. In the second stage, the proposed fitness evaluation scheme is developed to exploit some characteristics from the proposed solver and to perform piecewise polynomial approximations in order to evaluate differential individuals from a given evolutionary algorithm population. Finally, a preliminary implementation of a genetic programming application is presented and some issues are discussed to enable a better understanding of computer-automated system modelling. Indications for some promising subjects for future continuation researches are also addressed here, as how to expand this work to some classes of non-linear partial differential equations.
44

Équations différentielles stochastiques sous les espérances mathématiques non-linéaire et applications

Lin, Yiqing 28 May 2013 (has links) (PDF)
Cette thèse est composée de deux parties indépendantes : la première partie traite des équations différentielles stochastiques dans le cadre de la G-espérance, tandis que la deuxième partie présente les résultats obtenus pour les équations différentielles stochastiques du seconde ordre. Dans un premier temps, on considère les intégrales stochastiques par rapport à un processus croissant, et on donne une extension de la formule d'Itô dans le cadre de la G-espérance. Ensuite, on étudie une classe d'équations différentielles stochastiques réfléchies unidimensionnelles dirigées par un G-mouvement brownien. Dans la suite, en utilisant une méthode de localisation, on prouve l'existence et l'unicité de solutions pour les équations différentielles stochastiques dirigées par un G-mouvement brownien, dont les coefficients sont localement lipschitziens. Enfin, dans le même cadre, on discute des problèmes de réflexion multidimensionnelle et on fournit quelques résultats de convergence. Dans un deuxième temps, on étudie une classe d'équations différentielles stochastiques rétrogrades du seconde ordre à croissance quadratique. Le but de ce travail est de généraliser le résultat obtenu par Possamaï et Zhou en 2012. On montre aussi l'existence et l'unicité des solutions pour ces équations, mais sous des hypothèses plus faibles. De plus, ce résultat théorique est appliqué aux problèmes de maximisation robuste de l'utilité du portefeuille en finance.
45

Méthodes numériques géométriques et multi-échelles pour les équations différentielles (in English)

Vilmart, Gilles 02 July 2013 (has links) (PDF)
Mes travaux de recherche portent sur l'analyse numérique des intégrateurs géométriques et multi-échelles pour les équations différentielles déterministes ou stochastiques. Les modèles d'équations différentielles issus de la physique ou la chimie possèdent souvent une structure géométrique ou multi-échelles particulière (par exemple, les structures hamiltoniennes, les intégrales premières, les structures multi-échelles en temps ou en espace, les systèmes hautement oscillatoires), mais leur complexité est souvent telle qu'une solution satisfaisante est hors de portée en utilisant seulement des méthodes numériques standards à usage général. L'objectif est donc d'identifier les propriétés géométriques ou multi-échelles pertinentes de ces problèmes, et d'en tirer avantage pour concevoir et analyser de nouveaux intégrateurs efficaces, fiables et précis, reproduisant fidèlement le comportement qualitatif de la solution exacte des modèles considérés.
46

Nonlinear acoustic wave propagation in complex media : application to propagation over urban environments

Leissing, Thomas 30 November 2009 (has links) (PDF)
Dans cette recherche, un modèle de propagation d'ondes de choc sur grandes distances sur un environnement urbain est construit et validé. L'approche consiste à utiliser l'Equation Parabolique Nonlinéaire (NPE) comme base. Ce modèle est ensuite étendu afin de prendre en compte d'autres effets relatifs à la propagation du son en milieu extérieur (surfaces non planes, couches poreuses, etc.). La NPE est résolue en utilisant la méthode des différences finies et donne des résultats en accord avec d'autres méthodes numériques. Ce modèle déterministe est ensuite utilisé comme base pour la construction d'un modèle stochastique de propagation sur environnements urbains. La Théorie de l'Information et le Principe du Maximum d'Entropie permettent la construction d'un modèle probabiliste d'incertitudes intégrant la variabilité du système dans la NPE. Des résultats de référence sont obtenus grâce à une méthode exacte et permettent ainsi de valider les développements théoriques et l'approche utilisée
47

Quelques aspects qualitatifs de la théorie de la commande

Lobry, Claude 19 May 1972 (has links) (PDF)
.
48

Modèle physique discret et systèmes différentiels: vers l'élaboration d'un simulateur cellulaire

Carra, Alexandre 30 April 2008 (has links) (PDF)
Ce travail de thèse constitue une première étape vers l'élaboration d'un simulateur cellulaire destiné aux biologistes. Nous proposons une approche dynamique en trois dimensions pour la modélisation de systèmes biologiques en combinant des mécanismes d'origine diverse (élasticité cellulaire, dynamique du cytosquelette, réactions chimiques) à différentes échelles de temps (de la seconde à la minute) et d'espace (depuis l'intérieur de la cellule jusqu'à une population de cellules). Une relation explicite est ainsi établie entre les réactions chimiques hébergées par la cellule et la dynamique de son mouvement tout en considérant les signaux extracellulaires. Nous nous intéressons également aux lois d'interaction entre objets biologiques et nous attachons à décrire différents types de contacts (cellule-cellule, cellule-substrat), leur évolution dynamique (glissement, roulement) et les conséquences sur l'architecture de la cellule ou du tissu.
49

Contribution à l'étude de l'élasticité dans le cas de déformations planes petites et de rotations quelconques

Hajal, Mounir 07 September 1967 (has links) (PDF)
.
50

Modélisation de la dépendance et simulation de processus en finance

Sbai, Mohamed 25 November 2009 (has links) (PDF)
La première partie de cette thèse est consacrée aux méthodes numériques pour la simulation de processus aléatoires définis par des équations différentielles stochastiques (EDS). Nous commençons par l'étude de l'algorithme de Beskos et al. [13] qui permet de simuler exactement les trajectoires d'un processus solution d'une EDS en dimension 1. Nous en proposons une extension à des fins de calcul exact d'espérances et nous étudions l'application de ces idées à l'évaluation du prix d'options asiatiques dans le modèle de Black & Scholes. Nous nous intéressons ensuite aux schémas numériques. Dans le deuxième chapitre, nous proposons deux schémas de discrétisation pour une famille de modèles à volatilité stochastique et nous en étudions les propriétés de convergence. Le premier schéma est adapté à l'évaluation du prix d'options path-dependent et le deuxième aux options vanilles. Nous étudions également le cas particulier où le processus qui dirige la volatilité est un processus d'Ornstein-Uhlenbeck et nous exhibons un schéma de discrétisation qui possède de meilleures propriétés de convergence. Enfin, dans le troisième chapitre, il est question de la convergence faible trajectorielle du schéma d'Euler. Nous apportons un début de réponse en contrôlant la distance de Wasserstein entre les marginales du processus solution et du schéma d'Euler, uniformément en temps. La deuxième partie de la thèse porte sur la modélisation de la dépendance en finance et ce à travers deux problématiques distinctes : la modélisation jointe entre un indice boursier et les actions qui le composent et la gestion du risque de défaut dans les portefeuilles de crédit. Dans le quatrième chapitre, nous proposons un cadre de modélisation original dans lequel les volatilités de l'indice et de ses composantes sont reliées. Nous obtenons un modèle simplifié quand la taille de l'indice est grande, dans lequel l'indice suit un modèle à volatilité locale et les actions individuelles suivent un modèle à volatilité stochastique composé d'une partie intrinsèque et d'une partie commune dirigée par l'indice. Nous étudions la calibration de ces modèles et montrons qu'il est possible de se caler sur les prix d'options observés sur le marché, à la fois pour l'indice et pour les actions, ce qui constitue un avantage considérable. Enfin, dans le dernier chapitre de la thèse, nous développons un modèle à intensités permettant de modéliser simultanément, et de manière consistante, toutes les transitions de ratings qui surviennent dans un grand portefeuille de crédit. Afin de générer des niveaux de dépendance plus élevés, nous introduisons le modèle dynamic frailty dans lequel une variable dynamique inobservable agit de manière multiplicative sur les intensités de transitions. Notre approche est purement historique et nous étudions l'estimation par maximum de vraisemblance des paramètres de nos modèles sur la base de données de transitions de ratings passées

Page generated in 0.1216 seconds