Spelling suggestions: "subject:"équations différentielle""
71 |
Simplification automatique de modèle et étude du régime permanentGarneau, Cyril 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2009-2010 / Les modèles mathématiques servant à simuler le comportement de stations d'épurations représentent un outil puissant pour concevoir une nouvelle installation ou prédire le comportement d'une station d'épuration déjà existante. Cependant, ces modèles ne fournissent aucune information sur un système particulier sans un algorithme pour les résoudre. Il existe actuellement un grand nombre d'algorithmes d'intégration capables de calculer la solution d'un modèle avec précision. Cependant, les temps de calcul en jeux représentent toujours l'un des obstacles à une utilisation extensive des modèles. Deux approches permettent de réduire les temps de calcul, à savoir l'utilisation de matériel informatique plus puissant ou le développement de logiciels et algorithmes plus performants. L'objectif principal de ce mémoire est de proposer une troisième voie, soit la simplification automatique d'un modèle sur la base de ses valeurs propres. Le jacobien, une approximation locale du modèle, est utilisé comme base de l'étude des valeurs propres. Une méthode d'homotopie est ensuite utilisée pour maintenir le lien entre les valeurs propres et les variables d'état d'un jacobien simplifié à sa seule diagonale aux valeurs propres du jacobien entier. Puisque les valeurs propres représentent une approximation valable de la dynamique des variables d'état d'un modèle, il est possible de trier ces variables d'état sur la base de leurs valeurs propres associées. Les variables d'état présentant une dynamique très rapide par rapport à l'échelle de temps d'intérêt seront alors considérées comme étant toujours à l'équilibre, ce qui permet de négliger leur dynamique transitoire et donc d'accélérer la résolution du modèle. Cette simplification est réalisée à l'intérieur d'un algorithme d'intégration de type Diagonal Implicite de Runge-Kutta capable de résoudre des systèmes d'équations différentielles et algébriques. Ce mémoire s'attaque également à un cas particulier de la simulation, soit le calcul du régime permanent. Ce calcul peut être réalisé par des algorithmes performants ne recherchant que les valeurs des variables d'état mettant à zéro les équations différentielles. Ces algorithmes sont cependant peu fiables puisque toute solution mathématique est jugée valide, peu importe la réalité physique. La solution proposée est l'injection de connaissance sous forme de bornes aux valeurs que peuvent prendre les variables d'état. Des équations algébriques implicites sont construites automatiquement sur ces bornes pour forcer la convergence dans l'intervalle voulu.
|
72 |
La compréhension de l'équation : un éclairage des conduites d'élèves à la fin de la 3e secondaireProvencher, Annie 11 April 2018 (has links)
Le présent mémoire vise à éclairer les habiletés conceptuelles d'élèves de la fin de 3e secondaire dans la résolution de problèmes verbaux et d'exercices, les premiers mettant en cause des équations. Cinquante-deux sujets ont été soumis à une épreuve algébrique, dix d'entre eux ayant été reçus en entrevue dans le but de leur permettre d'expliciter leur point de vue. Les procédés utilisés par ceux-ci ont été identifiés sur la base des réponses et des justifications fournies, puis comparés, dans le cas des problèmes, au schème de raisonnement « idéal », en plus de mettre en évidence, pour les exercices, les significations attribuées aux symboles littéraux, aux opérations et au signe d'égalité. Les profils de chacun des sujets ont finalement été esquissés et huit schèmes ou trajets organisateurs d'ensemble de la conduite ont été dégagés, l'étude concluant sur une conception peu consistante et stabilisée de l'équation.
|
73 |
Stochastic differential equations with constraints on the state : backward stochastic differential equations, variational inequalities and fractional viability / Équations différentielles stochastiques avec contrainte sur l'état : équations différentielles rétrogrades, inégalités variationnelles et viabilité fractionnaire / Ecuaţii diferenţiale stochastice cu restricţii pe stare : ecuaţii diferenţiale stochastice retrograde, inegalitâţi variaţionale, şi viabilitate fracţionarâNie, Tianyang 20 September 2012 (has links)
Le travail de thèse est composé de trois thèmes principaux : le premier étudie l'existence et l'unicité pour des équations différentielles stochastiques (EDS) progressives-rétrogrades fortement couplées avec des opérateurs sous-différentiels dans les deux équations, dans l’équation progressive ainsi que l’équation rétrograde, et il discute également un nouveau type des inégalités variationnelles partielles paraboliques associées, avec deux opérateurs sous-différentiels, l’un agissant sur le domaine de l’état, l’autre sur le co-domaine. Le second thème est celui des EDS rétrogrades sans ainsi qu’avec opérateurs sous-différentiels, régies par un mouvement brownien fractionnaire avec paramètre de Hurst H> ½. Il étend de manière rigoureuse les résultats de Hu et Peng (SICON, 2009) aux inégalités variationnelles stochastiques rétrogrades. Enfin, le troisième thème met l’accent sur la caractérisation déterministe de la viabilité pour les EDS régies par un mouvement brownien fractionnaire. Ces trois thèmes de recherche mentionnés ci-dessus ont en commun d’étudier des EDS avec contraintes sur le processus d’état. Chacun des trois sujets est basé sur une publication et des manuscrits soumis pour publication, respectivement. / This PhD thesis is composed of three main topics: The first one studies the existence and the uniqueness for fully coupled forward-backward stochastic differential equations (SDEs) with subdifferential operators in both the forward and the backward equations, and it discusses also a new type of associated parabolic partial variational inequalities with two subdifferential operators, one acting over the state domain and the other over the co-domain. The second topic concerns the investigation of backward SDEs without as well as with subdifferential operator, both driven by a fractional Brownian motion with Hurst parameter H> 1/2. It extends in a rigorous manner the results of Hu and Peng (SICON, 2009) to backward stochastic variational inequalities. Finally, the third topic focuses on a deterministic characterisation of the viability for SDEs driven by a fractional Brownian motion. The three research topics mentioned above have in common to study SDEs with state constraints. The discussion of each of the three topics is based on a publication and on submitted manuscripts, respectively.
|
74 |
Atteignabilité hybride des systèmes dynamiques continus par analyse par intervalles : application à l'estimation ensemblisteMeslem, Nacim 23 June 2008 (has links) (PDF)
Cette thèse porte sur le calcul d'une sur-approximation conservative pour les solutions d'équations différentielles ordinaires en présence d'incertitudes et sur son application à l'estimation et l'analyse de systèmes dynamiques à temps continu. L'avantage principal des méthodes et des algorithmes de calculs présentés dans cette thèse est qu'ils apportent une preuve numérique de résultats. Cette thèse est organisée en deux parties. La première partie est consacrée aux outils mathématiques et aux méthodes d'intégration numérique garantie des équations diff érentielles incertaines. Ces méthodes permettent de caractériser de manière garantie l'ensemble des trajectoires d'état engendrées par un système dynamique incertain dont les incertitudes sont naturellement représentées par des intervalles bornés. Dans cette optique, nous avons développé une méthode d'intégration hybride qui donne de meilleurs résultats que les méthodes d'intégration basées sur les modèles de Taylor intervalles. La seconde partie aborde les problèmes de l'identification et de l'observation dans un contexte à erreurs bornées ainsi que le problème d'atteignabilité continue pour la véri cation de propriétés des systèmes dynamiques hybrides.
|
75 |
Normalisation de champs de vecteurs holomorphes et équations différentielles implicites / Normalization of holomorphic vector fields and implicit differential equationsAurouet, Julien 06 December 2013 (has links)
La théorie classique des formes normales a pour but de simplifier des problèmes compliqués grâce à des changements de coordonnées réguliers pour ne conserver que les caractéristiques dynamiques du système. Plus précisément, on considère un système dynamique que l'on dit "élémentaire", comme par exemple la partie linéaire d'un champ de vecteurs au voisinage d'un point singulier, et on se donne une perturbation de ce système élémentaire. Les formes normales sont alors l'ensemble des représentants de ces perturbations à la conjugaison près d'une transformation régulière. Elles ne sont constituées que des termes qui caractérisent la dynamique du système perturbé et que l'on appelle "résonances". Dans la première partie de la thèse on cherche à comprendre la dynamique locale d'équations différentielles implicites de la forme F(x,y,y')=0, où F est un germe de fonction holomorphe au voisinage d'un point singulier. Pour cela on utilise la relation intime entre les systèmes implicites et les champs liouvilliens. La classification par transformation de contact des équations implicites provient de la classification symplectique des champs liouvilliens. On utilise alors toute la théorie des formes normales pour les champs de vecteurs, dans le cas holomorphe (Brjuno, Siegel, Stolovitch) et dans le cas réel (Sternberg), que l'on adapte pour les champs liouviliens avec des transformations symplectiques. On établit alors des résultats de classification des équations implicites en fonction des invariants dynamiques, ainsi que des conditions d'existence de solutions locales via les formes normales. / The aim of the classical theory of normal forms is to simplify complicated problems by using regular changes of coordinates, in order to keep the dynamical characteristics of the system. More precisely, we consider a dynamic system said to be "elementary", like a linear part of a vector field in the neighborhood of a singular point, and we focus on a perturbation of this elementary system. Normal forms are the set of all representatives of those perturbations under the action of the group of regular transformation. They are composed of terms which caracterise the dynamics of the perturbed system, and which are called "resonances". In the first part, we try to understand the local dynamic of implicit equations of the form $F(x,y,y')=0$, where $F$ is a germ of holomorphic function in a neighborhood of a singular point. To this end we use the relation between implicit systems and liouvillian vector fields. The classification by contact transformations of implicit equations come from the symplectic classification of liouvillian vector fields. We use all normal forms theory for vector fields, in complex case (Bjruno, Siegel, Stolovitch), and in real case (Sternberg), adapted to liouvillian fields with symplectic transformations. We establish classification results for implicit equations according to the dynamical invariants, and existence conditions of local solutions using normal forms. In the second part, we undertake the normalization of an analytic vector field in a neighborhood of the torus. Brjuno enunciates a theorem of normalization, under conditions of control of small divisors and integrability of the normal forms ; however he doesn't give any proof of that theorem.
|
76 |
Mathematical modeling of the hormonal regulation of food intake and body weight : applications to caloric restriction and leptin resistance / Modélisation mathématique de la régulation hormonale de la prise alimentaire et de la prise de poids : Applications à la restriction calorique et la résistance à la leptineJacquier, Marine 05 February 2016 (has links)
Réguler la prise alimentaire et la dépense énergétique permet en général de limiter d'importants changements de poids corporel. Hormones (leptine, ghréline, insuline) et nutriments sont impliqués dans ces régulations. La résistance à la leptine, souvent associée à l'obésité, limite la régulation de la prise alimentaire. La modélisation mathématique de la dynamique du poids contribue en particulier à une meilleure compréhension des mécanismes de régulation (notamment chez l’humain). Or les régulations hormonales sont largement ignorées dans les modèles existants.Dans cette thèse, nous considérons un modèle de régulation hormonale du poids appliqué aux rats, composé d'équations différentielles non-linéaires. Il décrit la dynamique de la prise alimentaire, du poids et de la dépense énergétique, régulés par la leptine, la ghréline et le glucose. Il reproduit et prédit l'évolution du poids et de la prise alimentaire chez des rats soumis à différents régimes hypocaloriques, et met en évidence l'adaptation de la dépense énergétique. Nous introduisons ensuite le premier modèle décrivant le développement de la résistance à la leptine, prenant en compte la régulation de la prise alimentaire par la leptine et ses récepteurs. Nous montrons que des perturbations de la prise alimentaire, ou de la concentration en leptine, peuvent rendre un individu sain résistant à la leptine et obèse. Enfin, nous présentons une simplification réaliste de la dynamique du poids dans ces modèles, permettant de construire un nouveau modèle combinant les deux modèles précédents / The regulation of food intake and energy expenditure usually limits important loss or gain of body weight. Hormones (leptin, ghrelin, insulin) and nutrients (glucose, triglycerides) are among the main regulators of food intake. Leptin is also involved in leptin resistance, often associated with obesity and characterized by a reduced efficacy to regulate food intake. Mathematical models describing the dynamics of body weight have been used to assist clinical weight loss interventions or to study an experimentally inaccessible phenomenon, such as starvation experiments in humans. Modeling of the effect of hormones on body weight has however been largely ignored.In this thesis, we first consider a model of body weight regulation by hormones in rats, made of nonlinear differential equations. It describes the dynamics of food intake, body weight and energy expenditure, regulated by leptin, ghrelin and glucose. It is able to reproduce and predict the evolution of body weight and food intake in rats submitted to different patterns of caloric restriction, showing the importance of the adaptation of energy expenditure. Second, we introduce the first model of leptin resistance development, based on the regulation of food intake by leptin and leptin receptors. We show that healthy individuals may become leptin resistant and obese due to perturbations in food intake or leptin concentration. Finally, modifications of these models are presented, characterized by simplified yet realistic body weight dynamics. The models prove able to fit the previous, as well as new sets of experimental data and allow to build a complete model combining both previous models regulatory mechanisms
|
77 |
Sur les solutions d'équations différentielles de Stieltjes du premier et du deuxième ordreLarivière, François 10 1900 (has links)
No description available.
|
78 |
Solutions formelles d'équations différentielles : le logiciel de calcul formel DESIR : étude théorique et réalisationTournier, Evelyne 02 April 1987 (has links) (PDF)
Le sujet de la thèse se rattache au calcul formel. La première partie est consacrée à l'étude et à la réalisation d'un logiciel de résolution d'équations différentielles. Ce logiciel DESIR est écrit pour le système de calcul formel REDUCE. Il permet d'obtenir les solutions formelles d'équations différentielles, d'un ordre quelconque, au voisinage de points réguliers et irréguliers. La deuxième partie est une étude approfondie des équations aux différences. Cette étude est orientée vers la recherche d'algorithme permettant de construire une base de solutions asymptotiques d'une équation aux différences linéaires à coefficients dans un corps de séries formelles
|
79 |
Transmission robuste et fiable du multimédia sur InternetRamos Ramos, Víctor Manuel 07 December 2004 (has links) (PDF)
Dans cette thèse, nous proposons des modèles pour évaluer les performances des applications multimédias temps-réel. De plus, nous proposons un modèle pour les protocoles de type AIMD. Le premier sujet étudié est un mécanisme de correction d'erreurs (FEC). Premièrement, nous utilisons une file d attente M/M/1/K pour modéliser le réseau. Nous considérons que la qualité de la voix varie linéairement par rapport au taux de redondance de la FEC. La redondance du i-ème paquet est portée dans le paquet i+f. Notre analyse montre que, même pour le cas f->inf, ce mécanisme n'améliore pas la qualité de l'audio. Deuxièmement, nous modélisons notre système par une file M/G/1/K. Nous considérons deux aspects qui peuvent contribuer à améliorer la qualité de l'audio: (a) multiplexer l'audio avec un flux exogène, et (b) des fonctions d'utilité non-linéaires. Sous ces contraintes, on montre qu il est possible d'améliorer la qualité de l'audio avec la méthode FEC étudiée. Le deuxième sujet traité concerne les mécanismes de contrôle du délai de diffusion. Nous proposons un ensemble d'algorithmes de moyenne mobile permettant de contrôler le taux de pertes dans une session audio. Les performances de nos algorithmes ont été évaluées et comparées grâce à des traces réelles. Le troisième sujet abordé concerne les protocoles de type AIMD. Nous proposons un modèle analytique, prenant en compte la variabilité du délai. Notre modèle utilise des équations de différences stochastiques. Il fournit une expression close pour le débit et pour la taille de la fenêtre. Nous montrons, par analyse et par simulation, qu'une augmentation de la variabilité du délai améliore les performances d'un protocole AIMD.
|
80 |
Instabilité d'un lit granulaire cisaillé par un écoulement fluideLanglois, Vincent 09 December 2005 (has links) (PDF)
Cette thèse a pour objet l'étude expérimentale, théorique et numérique<br />de l'instabilité d'un lit granulaire cisaillé par un écoulement<br />fluide continu.<br />Nous avons caractérisé expérimentalement la longueur d'onde initiale des<br />rides, ainsi que l'évolution de leur amplitude et de leur longueur d'onde<br />moyenne. Par ailleurs, nous nous sommes intéressés à la transition morphologique<br />des rides perpendiculaires à l'écoulement vers des motifs 3D plus complexes.<br />Nous avons également développé une analyse de stabilité linéaire<br />du problème, dans le cas d'un écoulement laminaire, qui permet de prédire<br />correctement la longueur d'onde à l'initiation. D'autre part, une analyse<br />faiblement non-linéaire rend compte de l'apparition de motifs 3D.<br />Enfin, nous avons abordé la dynamique non-linéaire des rides: des<br />simulations numériques en 2D, basées sur l'étude théorique précédente,<br />ont permis de retrouver qualitativement l'évolution aux temps longs observée<br />expérimentalement.
|
Page generated in 0.1427 seconds