• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à l'étude de quelques équations aux dérivées partielles, en mécanique des fluides et en génie côtier.

Azerad, Pascal 19 December 2007 (has links) (PDF)
Je présente essentiellement les travaux réalisés depuis ma thèse. <br />Ils se classent en trois thèmes:<br />Analyse asymptotique des équations de Navier-Stokes,<br />Optimisation de forme d'ouvrages de lutte contre l'érosion du littoral,<br />Etude d'équations aux dérivées partielles comportant des termes non-locaux.<br />Dans le thème 1, je développe la justification mathématique de l'approximation hydrostatique pour les fluides géophysiques à faible quotient d'aspect, hypothèse couramment vérifiée en océanographie et en météorologie. C'est un problème de perturbation singulière. Je présente également l'étude théorique et numérique de l'écoulement cône-plan, utilisé en hématologie-hémostase pour le sang de patients. Il s'agit d'un problème de couche limite singulière.<br /><br />Le thème 2 concerne le génie côtier. Les ouvrages utilisés tels que épis, brise-lames, enrochements sont de forme trop rudimentaire. Leur efficacité peut être améliorée significativement si leur forme est optimisée pour réduire l'énergie dissipée par la houle dans la zone proche-littorale. Nous optimisons aussi la forme de géotextiles immergés. Ce travail, réalisé dans le cadre de la thèse de Damien Isèbe, a reçu le soutien de l'ANR (projet COPTER) et s'effectue en partenariat avec le laboratoire Géosciences Montpellier et l'entreprise Bas-Rhône-Languedoc ingénierie (Nîmes).<br /><br />Dans le thème 3, nous prouvons existence, unicité et régularité de solutions pour l'équation de la chaleur fractionnaire, perturbée par un bruit blanc. C'est une équation aux dérivées partielles stochastique.Nous prouvons enfin un résultat d'existence, unicité et dépendance continue pour une loi de conservation non linéaire, comportant un terme non local, qui modélise l'évolution d'un profil de dune immergée. <br />L'intérêt mathématique est que l'équation ne vérifie pas le principe du maximum mais possède néanmoins un effet régularisant.
2

Contribution à l'analyse d'équations aux dérivées partielles <br />décrivant le mouvement de fronts avec applications<br />à la dynamique des dislocations.

Forcadel, Nicolas 02 July 2007 (has links) (PDF)
Ce travail porte sur la modélisation, l'analyse et l'analyse numérique de la dynamique des dislocations ainsi que sur les liens très forts qui existent avec les mouvements de type mouvement par courbure moyenne. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D'une manière générale, la dynamique d'une ligne de dislocation est décrite par une équation eikonale où la vitesse dépend de manière non locale de l'ensemble de la ligne. Il est également possible d'ajouter un terme de courbure moyenne dans la modélisation. <br /><br />La première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.<br /><br />Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
3

Étude d'équations de réplication-mutation non locales en dynamique évolutive. / Analysis of nonlocal replication-mutation equations in evolutionary dynamics.

Veruete, Mario 19 June 2019 (has links)
Nous analysons trois modèles non-locaux décrivant la dynamique évolutive d’un trait phénotypique continu soumis à l’action conjointe des mutations et de la sélection. Nous établissons l’existence et l’unicité des solutions du problème de Cauchy, et donnons la description du comportement en temps long de la solution. Dans le premier travail nous étudions l’équation du réplicateur-mutateur en domaine non borné et généralisons aux cas des valeurs sélectives confinantes les résultats connus dans le cas harmonique. À savoir, l’existence d’une unique solution globale, régulière, convergeant en temps long vers un profil universel ; pour cela, nous employons des techniques de décomposition spectrale d’opérateurs de Schrödinger. Le deuxième travail traite d’un modèle dont la valeur sélective est densité-dépendante. Afin de montrer le caractère bien posé de l’équation, nous combinons deux approches. La première est basée sur l’étude de la fonction génératrice des cumulants, satisfaisant une équation de transport non locale et permettant d’obtenir implicitement le trait moyen. La deuxième exploite un changement de variable (formule d’Avron-Herbst), permettant d’écrire la solution en termes du trait moyen et de la solution de l’équation de la chaleur avec même donnée initiale. Finalement, nous étudions un modèle dont le taux de mutation est proportionnel à la valeur moyenne du trait. Nous établissons un lien bijectif entre ce dernier modèle et le deuxième, permettant ainsi de décrire finement la dynamique de la solution. Nous montrons en particulier la croissance exponentielle du trait moyen. / We analyze three non-local models describing the evolutionary dynamics of a continuous phenotypic trait undergoing the joint action of mutations and selection. We establish the existence and uniqueness of the solutions to the Cauchy problem, and give a description of the long-time behaviour of the solution. In the first work we study the replicator-mutator equation in the unbounded domain and generalize to cases of selective values confining the known results in the harmonic case. Namely, the existence of a unique global regular solution, converging towards a universal profile; for this, we use spectral decomposition techniques of Schrödinger operators. In the second work, we discuss a model whose fitness value is density-dependent. In order to show the well-posedness of the equation, we combine two approaches. The first is based on the study of the cumulant generating functions, satisfying a non-local transport equation and making it possible to implicitly obtain the average trait. The second uses a change of variable (Avron-Herbst formula), allowing the solution to be written in terms of the average trait and the solution of the heat equation with the same initial data. Finally, we study a model whose mutation rate is proportional to the average value of the trait. We establish a bijective link between this last model and the second, thus making it possible to describe the dynamics of the solution in detail. In particular, we show the exponential growth of the average trait.
4

Equations d'évolution non locales et problèmes de transition de phase

Nguyen, Thanh Nam 29 November 2013 (has links) (PDF)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
5

Equations d'évolution non locales et problèmes de transition de phase / Non local evolution equations and phase transition problems

Nguyen, Thanh Nam 29 November 2013 (has links)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25. / The aim of this thesis is to study the large time behavior of solutions of nonlocal evolution equations and to also study the singular limit of equations and systems of parabolic partial differential equations involving a small parameter epsilon. In Chapter 1, we consider a nonlocal reaction-diffusion equation with mass conservation, which was originally proposed by Rubinstein and Sternberg as a model for phase separation in a binary mixture. The corresponding Neumann problem possesses a Lyapunov functional, namely a functional which decreases in time along solution orbits. After having proved that the solution is conned in an invariant region, we study its large time behavior and apply a Lojasiewicz inequality to show that it converges to a stationary solution as t tends to infinity. We also evaluate the rate of convergence and precisely compute the limiting stationary solution in one space dimension. Chapter 2 is devoted to the study of a nonlocal evolution equation which one obtains by neglecting the diffusion term in the nonlocal Allen-Cahn equation studied in Chapter 1. Without the diffusion term, the solution can not be expected to be more regular than the initial function. Moreover, because of the absence of the diusion term, the method of Chapter 1 can not be applied to study the large time behavior of the solution. We present a new method based up on rearrangement theory and the study of the solution profile. We show that the solution stabilizes for large times and give a detailed characterization of its asymptotic limit as t tends to infinity. More precisely, it turns out that the limiting function is a step function, which takes at most two values, which are stable points of a corresponding ordinary dierential equation. We also show by means of a nontrivial counterexample that, when a certain hypothesis on the initial function does not hold, the limiting function may take three values. One of them is the unstable point and the two others are the stable points of the ordinary dierential equation. We study in Chapter 3 a nonlocal ordinary dierential equation which has been proposed by M. Nagayama. The nonlocal term involves a denominator which may vanish. We apply a contraction fixed point theorem to prove the existence of a unique solution which stays confined in an invariant region. We also show that the corresponding initial value problem possesses a Lyapunov functional and prove that the solution stabilizes for large times to a step function, which takes at most two values. In Chapter 4, we consider a diffuse-interface tumor-growth model which involves a fourth order Cahn-Hilliard type equation. Introducing a related phase-field model, we formally study the singular limit of the solution as the reaction coecient tends to infinity. More precisely, we show that the solution converges to the solution of a moving boundary problem. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.

Page generated in 0.1438 seconds