Spelling suggestions: "subject:"été quantique""
1 |
Reconstruction d'états non classiques du champ en électrodynamique quantique en cavitéDeléglise, Samuel 03 December 2009 (has links) (PDF)
Notre dispositif d'électrodynamique quantique en cavité permet de faire interagir dans le régime de couplage fort deux systèmes simples et parfaitement contrôlés : des atomes à deux niveaux et un seul mode du champ électromagnétique. Des miroirs supraconducteurs permettent de stocker le champ électromagnétique micro-onde dans une cavité pendant plus d'un dixième de seconde. Afin de sonder et de manipuler le champ piégé, nous utilisons des atomes de Rubidium excités dans les états de Rydberg circulaires. Les atomes interagissent un à un avec la cavité dans le régime dispersif. Ils se comportent alors comme de petites horloges dont la fréquence est affectée par les photons piégés grâce au phénomène de déplacement lumineux. Les petites modifications de la phase atomique après la traversée du mode sont mesurées par interférométrie de Ramsey, permettant de compter le nombre de photons piégés. En adaptant légèrement la méthode, on parvient à reconstruire complètement la matrice densité du champ piégé. Cette technique a été appliquée à différents états non-classiques du champ : des états de Fock, dont le nombre de photons est parfaitement déterminé, et des états chat de Schrödinger. Ces derniers sont formés de la superposition quantique de deux champs classiques de phases différentes. En répétant la procédure de reconstruction pour plusieurs délais successifs après la préparation, on obtient un film image par image de l'évolution temporelle de l'état. L'étude de l'évolution de l'état chat de Schrödinger sous l'effet de la décohérence apporte un éclairage intéressant sur le problème de la mesure en mécanique quantique et la frontière entre les mondes classique et quantique.
|
2 |
Nouveaux états quantiques de spin induits par frustration magnétique sur le réseau kagomeKermarrec, Edwin 05 December 2012 (has links) (PDF)
La déstabilisation de l'ordre antiferromagnétique de Néel au profit de nouvelles phases quantiques à température nulle à deux dimensions est envisageable grâce au phénomène de frustration magnétique. Le modèle théorique de spins Heisenberg S=1/2 répartis sur le réseau bidimensionnel frustré kagome, constitué de triangles joints uniquement par leurs sommets, est susceptible de stabiliser des phases quantiques originales de liquides de spin, qui ne présentent aucune brisure de symétrie à T = 0. Cette thèse a été consacrée à l'étude expérimentale de deux types de composés de spins S=1/2 (Cu2+) à géométrie kagome à l'aide de techniques spectroscopiques locales, la RMN et la μSR, ainsi que de mesures thermodynamiques (susceptibilité magnétique, chaleur spécifique). Dans Mg-herbertsmithite, la frustration est générée par une interaction d'échange premiers voisins antiferromagnétique J et est responsable d'un comportement liquide de spin jusqu'à des températures de l'ordre de J/10000. Par rapport au composé isostructural antérieur, Zn-herbertsmithite, nous avons montré qu'il possédait des propriétés physiques similaires tout en permettant une caractérisation fine du taux de défauts de substitutions Cu/Mg. Nos expériences réalisées à partir d'échantillons contrôlés permettent d'étudier finement l'origine des plateaux de relaxation observés en μSR à basse température en lien avec l'existence des défauts de spins interplans. La kapellasite et l'haydéite possèdent des interactions ferromagnétiques (J1) et antiferromagnétiques (Jd), offrant la possibilité d'explorer le diagramme de phases générées par la compétition de ces interactions sur le réseau kagome. Pour la kapellasite, nos mesures de μSR démontrent le caractère liquide de spin jusqu'à T ≈ J1/1000. La dépendance en température de la susceptibilité magnétique sondée par RMN du 35Cl ainsi que de la chaleur spécifique permettent d'évaluer le rapport Jd/J1 = 0.85, qui localise classiquement son fondamental au sein d'une phase originale de spins non coplanaires à 12 sous-réseaux appelée cuboc2. Les interactions présentes dans l'haydéite localisent son fondamental au sein de la phase ferromagnétique, en bon accord avec nos mesures qui indiquent une transition partielle à caractère ferromagnétique à T = 4 K. Cette étude confirme la pertinence du réseau kagome frustré pour la stabilisation de phases quantiques originales et démontre l'existence d'une nouvelle phase liquide de spin sur ce réseau, distincte de celle attendue pour des spins couplés antiferromagnétiquement.
|
3 |
Des fondements théoriques des concepts et méthodes de la chimie quantique à l'analyse et la prédiction d'observationsCassam-Chenaï, Patrick 17 June 2003 (has links) (PDF)
Le problème typique du physicien théoricien, tel qu'il peut être décrit dans certains manuels scolaires, consiste à rendre compte de faits expérimentaux et d'observations à l'aide d'un modèle théorique. L'expérimentateur (qui peut être la même personne) quant à lui valide ou invalide le modèle au moyen de nouvelles expériences. Pour le physicien et épistémologiste Thomas S. Kuhn (''La structure des révolutions scientifiques'', 1960), cette vision du progrès scientifique qui suppose, notons le en passant, que l'on ait affaire à des théories réfutables au sens de Popper, est quelque peu naïve. En effet, expérimentateurs et théoriciens sont déjà de connivence pour accepter les mêmes paradigmes au sens de Kuhn, c'est-à-dire en particulier qu'il y a accord, en général tacite, sur les problèmes susceptibles d'être formulés. Ils répondent malgré eux à des questions qu'ils ne se sont pas posés. Notre travail s'inscrit dans le cadre orthodoxe de la théorie quantique. Nous avons cependant tenté de répondre à quelques questions que l'on omet généralement de poser. Ceci aussi bien au niveau des méthodes et des concepts de la chimie théorique qu'au niveau de l'analyse de données expérimentales. Par exemple, dans nos travaux théoriques nous nous sommes demandé si la définition de certains concepts tenus pour fondamentaux était véritablement indépendante de toute approximation ou représentation arbitraire, et inversement si d'autres concepts supposés liés à une approximation particulière, ne pouvaient pas être étendus ou avoir une signification plus profonde que celle qu'on leur accorde habituellement (cas des surfaces de Born-Oppenheimer). Dans nos travaux d'analyse de données nous avons tenté de remonter à des données expérimentales aussi brutes que possible pour éviter les biais que peuvent introduire les traitements qu'elles subissent. Ces traitements sont fonctions des modèles physiques auxquels les données sont supposées se conformer et que nous avons remis en question. Depuis notre thèse, nous nous sommes efforcé de maintenir un équilibre entre une recherche fondamentale tournée vers la théorie et permettant de voir de façon plus synthétique ou plus critique, certains aspects de la chimie quantique, et une recherche tournée vers l'expérience et les applications astrophysiques. La présentation de nos travaux s'articulera donc naturellement sur deux volets. Notons aussi que cette présentation n'est pas exhaustive. En particulier nous n'aborderons pas ici nos travaux sur les hydrocarbones polycycliques aromatiques qui entrent dans une des thématiques traditionnelles de notre laboratoire. Notre exposé se limitera aux principaux projets de recherches dont nous avons eu l'initiative et qui ont donné lieu à des collaborations, (à l'exception de notre travail sur les bases flottantes dont il ne sera pas non plus question dans cette présentation). Ce choix nous a paru conforme à l'esprit de l'habilitation à diriger des recherches.
|
4 |
Optomécanique en cavité cryogénique avec un micro-pilier pour l'observation du régime quantique d'un résonateur mécanique macroscopiqueKuhn, Aurélien 21 June 2013 (has links) (PDF)
Nous présentons la réalisation d'un montage expérimental visant à mesurer optiquement les fluctuations quantiques de position d'un résonateur mécanique macroscopique. Le résonateur est placé dans un environnement cryogénique et son mouvement est observé grâce à une cavité Fabry-Perot de grande finesse. Nous avons conçu et réalisé un résonateur optimisé pour l'observation de ses fluctuations quantiques de position. Il s'agit d'un micro-pilier en quartz vibrant selon un mode de compression et maintenu en son milieu par une fine membrane. Nous avons obtenu un mode fondamental de vibration oscillant à 4 MHz avec un facteur de qualité mécanique de près de deux millions. Nous avons conçu une cavité Fabry-Perot de grande finesse avec ce résonateur. Un miroir de haute réflectivité est déposé uniquement au sommet du pilier afin d'éviter de dégrader son facteur de qualité mécanique. Nous avons développé une technique d'ablation par laser pour réaliser des coupleurs d'entrée de la cavité ayant à la fois un très faible rayon de courbure et une grande réflectivité. Ceci nous a permis de construire une cavité de finesse 50 000 dont la taille du col optique, inférieure à 10 μm, est bien adaptée aux dimensions du résonateur. Nous avons fait développer un cryostat à dilution optimisé pour une mesure de position ultrasensible, dans lequel nous avons placé le dispositif optomécanique. L'ensemble du montage optique, constitué d'une source laser ultra-stable et d'un dispositif de détection des mouvements du résonateur, nous a permis d'observer les fluctuations thermiques de position du résonateur jusqu'à une température de l'ordre de 1 K.
|
5 |
Nouveaux états quantiques de spin induits par frustration magnétique sur le réseau kagome / New quantum spin states induced by magnetic frustration on the kagome latticeKermarrec, Edwin 05 December 2012 (has links)
La déstabilisation de l’ordre antiferromagnétique de Néel au profit de nouvelles phases quantiques à température nulle à deux dimensions est envisageable grâce au phénomène de frustration magnétique. Le modèle théorique de spins Heisenberg S=1/2 répartis sur le réseau bidimensionnel frustré kagome, constitué de triangles joints uniquement par leurs sommets, est susceptible de stabiliser des phases quantiques originales de liquides de spin, qui ne présentent aucune brisure de symétrie à T = 0. Cette thèse a été consacrée à l’étude expérimentale de deux types de composés de spins S=1/2 (Cu2+) à géométrie kagome à l’aide de techniques spectroscopiques locales, la RMN et la μSR, ainsi que de mesures thermodynamiques (susceptibilité magnétique, chaleur spécifique). Dans Mg-herbertsmithite, la frustration est générée par une interaction d’échange premiers voisins antiferromagnétique J et est responsable d’un comportement liquide de spin jusqu’à des températures de l’ordre de J/10000. Par rapport au composé isostructural antérieur, Zn-herbertsmithite, nous avons montré qu’il possédait des propriétés physiques similaires tout en permettant une caractérisation fine du taux de défauts de substitutions Cu/Mg. Nos expériences réalisées à partir d’échantillons contrôlés permettent d’étudier finement l’origine des plateaux de relaxation observés en μSR à basse température en lien avec l’existence des défauts de spins interplans. La kapellasite et l’haydéite possèdent des interactions ferromagnétiques (J1) et antiferromagnétiques (Jd), offrant la possibilité d’explorer le diagramme de phases générées par la compétition de ces interactions sur le réseau kagome. Pour la kapellasite, nos mesures de μSR démontrent le caractère liquide de spin jusqu’à T ≈ J1/1000. La dépendance en température de la susceptibilité magnétique sondée par RMN du 35Cl ainsi que de la chaleur spécifique permettent d’évaluer le rapport Jd/J1 = 0.85, qui localise classiquement son fondamental au sein d’une phase originale de spins non coplanaires à 12 sous-réseaux appelée cuboc2. Les interactions présentes dans l’haydéite localisent son fondamental au sein de la phase ferromagnétique, en bon accord avec nos mesures qui indiquent une transition partielle à caractère ferromagnétique à T = 4 K. Cette étude confirme la pertinence du réseau kagome frustré pour la stabilisation de phases quantiques originales et démontre l’existence d’une nouvelle phase liquide de spin sur ce réseau, distincte de celle attendue pour des spins couplés antiferromagnétiquement. / Magnetic frustration helps destabilizing conventional Néel order at T = 0 in dimensions 2, and therefore allows the emergence of new original quantum phases. The S=1/2 Heisenberg Hamiltonian on the highly frustrated kagome lattice, which is made of corner-sharing triangles, is expected to stabilize such quantum states, including the spin liquid ones which do not break any symmetry even at T = 0. This thesis work focuses on the experimental study of two kinds of S=1/2 (Cu2+) kagome compounds using NMR and μSR local probes as well as thermodynamic measurements (magnetic susceptibility, specific heat).In Mg-herbertsmithite magnetic frustration occurs thanks to a first nearest-neighbor antiferromagnetic interaction J and is responsible for the spin liquid behavior observed down to T = J/10000. In comparison with the formerly known isostructural counterpart Zn-herbertsmithite, we showed that it shares similar physical magnetic properties while allowing sensitive structural refinements and therefore a control of the level of Cu/Mg substitutions defects. Our experiments performed on such well controlled materials allow us to investigate the origin of the dynamical relaxation in these compounds in relation with the existence of interplane spins defects. Kapellasite and haydeite possess both ferromagnetic (J1) and antiferromagnetic (Jd) interactions. They offer the possibility to explore the phase diagram generated by such competing interactions on the kagome lattice. For kapellasite, our μSR experiments evidenced a spin liquid character down to T ≈ J1/1000. We tracked the temperature dependence of the magnetic susceptibility probed by 35Cl-NMR as well as of the specific heat, from which the ratio Jd/J1 = 0.85 can be evaluated. This ratio locates the ground-state of kapellasite to be within an original non-coplanar spin phase described by 12 magnetic sublattices and called cuboc2. Magnetic exchanges in haydeite locate its ground-state within the ferromagnetic phase. Both our local and thermodynamic measurements point to a partial ferromagnetic transition at T = 4 K. This study confirms the relevance of the frustrated quantum kagome lattice to stabilize original quantum phases and suggests the existence of a new spin liquid phase, distinct from the one expected for antiferromagnetically coupled spins.
|
Page generated in 0.1005 seconds