• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 16
  • 16
  • 16
  • 15
  • 15
  • 15
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Genossensor para a detecção de Alicyclobacillus acidoterrestris baseado em nanocompósito polimérico

Flauzino, José Manuel Rodrigueiro 31 July 2017 (has links)
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais / Neste trabalho foi desenvolvido um nanocompósito polimérico de óxido de grafeno reduzido e poli(ácido 3 hidroxibenzóico) para a modificação de eletrodos de grafite, visando o desenvolvimento de um genossensor para a detecção do DNA genômico de Alicyclobacillus acidoterrestris. Esta é uma bactéria associada à deterioração de sucos ácidos, como o suco de laranja, do qual o Brasil é o maior produtor mundial. Neste contexto, os biossensores aparecem como dispositivos de detecção rápidos e fáceis de manusear, com grande potencial para serem utilizados em toda a cadeia produtiva do suco. Para a construção do genossensor, óxido de grafeno foi produzido pelo método de Hummers modificado, gotejado sobre a superfície do eletrodo de grafite e reduzido eletroquimicamente. O ácido 3-hidroxibenzóico foi eletropolimerizado sobre esta superfície contendo o nanomaterial. Análises por espectroscopia no infravermelho e voltametria cíclica comprovaram a redução do óxido de grafeno. Além disso, as análises eletroquímicas evidenciaram que o nanocompósito produzido apresenta propriedades eletrônicas superiores às do filme polimérico. Sobre este nanocompósito foi imobilizado um oligonucleotídeo sonda ALIC1, específico para A. acidoterrestris, o qual foi utilizado para detecção de um oligonucleotídeo alvo complementar ALIC2 pela técnica de voltametria de pulso diferencial (VPD), tanto direta quanto indiretamente, esta última utilizando-se o intercalante da dupla fita de DNA Hoechst 33258. Um lisado celular obtido a partir de uma cultura de A. acidoterrestris também foi detectado de maneira indireta pela técnica de VPD, e uma curva de calibração foi construída. O genossensor proposto apresentou um limite de detecção de 174 ng mL-1 e limite de quantificação de 581 ng mL-1, sendo capaz de detectar o DNA genômico em uma amostra real de suco de laranja e de discernir entre amostras de A. acidoterrestris e Escherichia coli. Deste modo, este bioeletrodo apresenta-se como a primeira plataforma de detecção eletroquímica do DNA genômico de A. acidoterrestris na literatura científica. / In this work a polymeric nanocomposite of reduced graphene oxide and poly (3- hydroxybenzoic acid) was developed for the modification of graphite electrodes, aiming the development of a genossensor for the detection of the Alicyclobacillus acidoterrestris genomic DNA. This bacterium is associated with the spoilage of acidic juices, such as orange juice, of which Brazil is the largest producer in the world. In this context, biosensors appear as fast and easy to handle detection devices, with great potential for use throughout the juice production chain. For the construction of the genosensor, graphene oxide was produced by the modified Hummers method, dripped onto the surface of the graphite electrode and reduced electrochemically. The 3-hydroxybenzoic acid was electropolymerized on this surface containing the nanomaterial. Analyzes by infrared spectroscopy and cyclic voltammetry proved the reduction of graphene oxide. In addition, the electrochemical analysis showed that the nanocomposite produced has higher electronic properties than the polymeric film. On this nanocomposite, an oligonucleotide probe ALIC1, specific for A. acidoterrestris, was immobilized, and was used to detect a complementary target oligonucleotide ALIC2, both directly and indirectly, the latter using the Hoechst 33258 double strand DNA intercalator, by the differential pulse voltammetry (DPV) technique. A cell lysate obtained from an A. acidoterrestris culture was also indirectly detected by DPV, and a calibration curve was constructed. The proposed genosensor presented a limit of detection of 174 ng mL-1 and limit of quantification of 581 ng mL-1, being able to detect the genomic DNA in a real sample of orange juice and to distinguish between the samples of A acidoterrestris and Escherichia coli. Thus, this bioelectrode presents as the first platform of electrochemical detection of the genomic DNA of A. acidoterrestris in the scientific literature. / Dissertação (Mestrado)
12

Estudo estrutural e eletrônico da influência de dopantes em coronenos funcionalizados

Freire, Eduily Benvindo Vaz 18 July 2017 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-01-10T13:05:24Z No. of bitstreams: 1 eduilybenvindovazfreire.pdf: 26345792 bytes, checksum: f56583c0c3a78800d1e94a7d0a63726f (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-01-23T11:45:18Z (GMT) No. of bitstreams: 1 eduilybenvindovazfreire.pdf: 26345792 bytes, checksum: f56583c0c3a78800d1e94a7d0a63726f (MD5) / Made available in DSpace on 2018-01-23T11:45:18Z (GMT). No. of bitstreams: 1 eduilybenvindovazfreire.pdf: 26345792 bytes, checksum: f56583c0c3a78800d1e94a7d0a63726f (MD5) Previous issue date: 2017-07-18 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Recentemente, o óxido de grafeno (GO) tornou-se um material de grande interesse físico e tecnológico e não só um material intermediário na síntese de grafeno, mas também como um produto para aplicações diretas. Na tentativa de tornar o GO mais próximo do grafeno, estruturalmente e tecnologicamente falando, o material passa por um processo de redução dos grupos funcionais oxigenados aderidos. Entretanto esse processo de redução não consegue retirar totalmente os grupos funcionais, e a esse material não completamente livre de grupos baseados no oxigênio damos o nome de óxido de grafeno reduzido (rGO). O rGO ao longo dos últimos anos se tornou alvo de pesquisas e muitas aplicações científicas e tec-nológicas como, por exemplo, em dispositivos eletrônicos orgânicos, como diodos emissores de luz (OLEDs), células solares, entre muitos outros. Para tornar este material ainda mais interessante para a área de eletrônica orgânica, propomos a dopagem das nossas moléculas de óxido de grafeno reduzido (rGOm) com átomos de boro, nitrogênio, alumínio silício, fósforo, gálio, germânio e arsênio, um de cada vez e de forma substitutiva. Nosso objetivo e´ fazer com que nosso material se torne um melhor condutor, mantendo ou melhorando sua transparência, pensando no uso deste material como eletrodos em dispositivos orgânicos. Neste trabalho, objetivamos estudar nossas moléculas de óxido de grafeno reduzido (rGOm) nos seus aspectos estruturais e eletrônicos, utilizando métodos semi-empíricos e ab initio a nível DFT, implementados nos programas GAMESS e MOPAC. Usamos como modelos de rGO estruturas contendo 42, 84 e 154 átomos, derivados da molécula de coroneno com adição de três grupos funcionais oxigenados: hidroxil, carboxil e epoxi. Começamos o trabalho fazendo uma busca conformacional da estrutura das nossas rGOm incluindo cada grupo funcional oxigenado ligado aos carbonos dos coronenos. Estudamos as rGOm juntamente com a dopagem, substituindo carbonos na estrutura pelos seguintes átomos: nitrogênio (N), boro (B), fósforo (P), silício (Si), alumínio (Al), arsênio (As), germânio (Ge) e gálio (Ga). Substituímos um átomo da folha de carbono de cada vez. Analisamos o gap de energia entre os estados eletrônicos de fronteira do material, a fim de encontrar tanto o sítio com menor energia total como o sítio com menor valor de gap. Realizamos os cálculos de energia e valor de gap das dopagens mencionadas acima em diferentes níveis de métodos, utilizamos tanto métodos semiempírico (PM3, PM6), quanto DFT (B3LYP, com base 6-31G), fizemos também comparação entre diferentes tipos de aproximação (UHF e RHF) com o objetivo de saber se essas aproximações eram compatíveis entre sícomparando energia total, gap e geometria. Por fim, um dos principais resultados foi a dopagem da rGOm com alumínio. O alumínio quando colocado em alguns sítios específicos promove a aproximação dos orbitais de fronteira, diminuindo o gap, tornando a rGOm do-pado com alumínio um material com propensão a melhor condução elétrica que a rGOm sem dopagem, o que aumenta o interesse na utilização deste material para eletrônica orgânica. / Recently, graphene oxide (GO) has become a material of great physical and technological interest and not only an intermediate material in the synthesis of graphene, but also as a product for direct applications. In an attempt to make GO closer to graphene, structurally and technologically speaking, the material undergoes a process of reduction of adhered oxygenated functional groups. Howe-ver, this reduction process does not completely remove the functional groups, and this material which is not completely free of oxygen-based groups, is called redu-ced graphene oxide (rGO). Over the past few years, RGO has become the target of research and many scientific and technological applications, such as organic electronic devices such as light-emitting diodes (OLEDs), solar cells, and many others. To make this material even more interesting to the area of organic elec-tronics, we propose the doping of our reduced graphene oxide molecules (rGO m) with boron, nitrogen, silicon aluminium, phosphorus, gallium, germanium and arsenic, one at a time and in a substitute way. Our goal is to make our material become a better conductor, maintaining or improving its transparency, thinking of using this material as electrodes in organic devices. In this work, we aim to study our reduced graphene oxide molecules (rGOm) in their structural and electronic aspects, using semi-empirical and ab initio methods at the DFT level, implemented in the GAMESS and MOPAC programs. We used as RGO models structures containing 42, 84 and 154 atoms derived from the coronon molecule with addition of three oxygenated functional groups: hidroxyl, carboxyl and epoxy. We begin the work by making a conformational search of the structure of our rGOm including each oxygenated functional group attached to the carbon atoms of the coronenes. We study the rGOm along with doping, replacing carbons in the structure with the following atoms: nitrogen (N), boron (B), phosphorus (P), silicon (Si), aluminium (Al), arsenic, germanium (Ge) and gallium (Ga). We replace one atom of the carbon sheet each time. We analyzed the energy gap between the border electronic states of the material in order to find both the site with the lowest total energy and the site with the least gap value. We performed the energy calculations and gap value of the above-mentioned dops at different levels of methods, we used both semi-empirical methods (PM3, PM6) and DFT (B3LYP, based on 6-31G), we also compared different types of approximations (UHF and RHF) in order to know if these were compatible with each other comparing total energy, gap and geometry. Finally, one of the main results was the doping of rGOm with aluminium. Aluminium when placed at some specific sites promotes the approach of border orbitals by reducing the gap, making aluminium-doped rGOm a material with a propensity for better electrical conduction than rGOm without doping, which increases the interest in using this material for organic electronics.
13

Síntese e processamento de compósito cerâmico zircônia-grafeno / Synthesis and processing of zirconia-graphene ceramic composite

Manarão, Diego Santos 27 February 2018 (has links)
O objetivo desse trabalho foi desenvolver um compósito cerâmico de zircônia-grafeno para aplicação odontológica. Este estudo avaliou o efeito do pó de partida, concentração de grafeno e da temperatura de sinterização sobre as propriedades mecânicas (dureza e tenacidade à fratura) do compósito desenvolvido. Para isto foram sintetizados os pós de Y-TZP a partir de soluções de óxido-cloreto de zircônio e cloreto de ítrio na proporção desejada de 3mol% através da rota de co-precipitação em solução de hidróxido de amônio seguido por uma série de lavagens em água, etanol e butanol com posterior destilação azeotrópica, secagem, moagem e calcinação. O grafeno foi obtido a partir da exfoliação química de grafite pelo método de Hummers [40] modificado por Marcano [39], o que resultou em um gel acastanhado que foi submetido a lavagem por centrifugação, secagem e desaglomeração em almofariz de ágata, resultando, por fim, no óxido de grafeno. Uma segunda etapa foi o processo de redução química com ácido ascórbico para obtenção de óxido de grafeno reduzido, um pó de coloração escura que foi adicionado à Y-TZP para a obtenção do compósito nas diversas concentrações (em mol%) que foram estudadas: (0,01%, 0,05%, 0,10%, 0,50%, 1,00% e 2,00%). Os pós foram caracterizados por termogravimetria, difração de raios X e espectroscopia (FT-IR). Os espécimes foram confeccionados em matriz metálica cilíndrica e sinterizados em forno tubular em atmosfera inerte. Outros espécimes foram confeccionados em matriz de grafite de alta densidade e sinterizados por Spark Plasma Sintering (SPS). Todas as amostras foram caracterizadas por meio de ensaios de densidade, dureza Vickers, tenacidade à fratura e microscopia eletrônica de varredura. Os maiores valores de densidade relativa foram observados para as amostras sinterizadas em SPS, sendo que se obteve valor de densidade relativa de 98,7 % para a concentração de 0,50% de grafeno e 98,4% para a Y-TZP pura. Por outro lado, o maior valor encontrado em sinterização em atmosfera a 1400°C sem a presença de H2 para Y-TZP pura foi da ordem de 96,76%. Os valores de dureza foram maiores nas amostras sinterizadas em SPS, no entanto a tenacidade à fratura mostrou não se alterar em função do conteúdo de grafeno. As fotomicrografias de MEV mostraram que houve uma variação de tamanho de grão de acordo com a presença do grafeno e do método de sinterização. De acordo com os resultados obtidos neste trabalho foi possível concluir que o processamento desenvolvido permitiu a criação de um compósito cerâmico zircônia-grafeno que pôde ser caracterizado por diversos métodos analíticos. A densidade teórica do compósito desenvolvido não foi alcançada por meio de nenhum dos métodos de sinterização utilizados (Tubular ou SPS) e nem variando-se a temperatura. Para espécimes sinterizados em atmosfera inerte, a maior temperatura de sinterização (1400°C) e a presença do gás H2 não melhorou a densificação. Além disso, esses espécimes tiveram aumento da dureza com o aumento da concentração de grafeno, entretanto, a sua tenacidade à fratura não foi afetada pelo teor de grafeno. Para espécimes sinterizados por meio de SPS, a temperatura de sinterização de 1350°C resultou em melhores valores de densificação. Além disso, para este tipo de sinterização, tanto a dureza como a tenacidade à fratura foram afetadas pelo teor de grafeno. / The objective of this work was to develop a zirconia-graphene ceramic composite for dental application. The study evaluated the effect of the starting powder effect, graphene concentration and sintering temperature on the mechanical properties of the composite. For this, the Y-TZP powders were synthesized from zirconium chloride and yttrium chloride solutions in the desired ratio of 3 mol% through the co-precipitation route in ammonium hydroxide solution followed by a series of washes in water, ethanol and butanol with subsequent azeotropic distillation, drying, grinding and calcination. Graphene was obtained from the chemical exfoliation of graphite by the method of Humans modified by Marcano, which resulted in a brownish gel that was subjected to washing by centrifugation, drying and deagglomeration in agate mortar, resulting finally in the graphene oxide. A second step was the chemical reduction with ascorbic acid to obtain reduced graphene oxide, a dark-colored powder that was added to the Y-TZP to obtain the composite in the various concentrations (in mol%) that were studied (0, 01%, 0.05%, 0.10%, 0.50%, 1.00% and 2.00%). The powders were characterized by thermogravimetry, X-ray diffraction and spectroscopy (FT-IR). The specimens were made in cylindrical metallic matrix and sintered in a tubular oven. Other samples were made in high density graphite matrix and sintered by Spark Plasma Sintering (SPS). All samples were characterized by means of density tests, Vickers hardness, fracture toughness and scanning electron microscopy. The highest values of relative density were observed for the sintered samples in SPS. A relative density of 98.7% was obtained for the 0.50% concentration of graphene and 98.4% for the pure Y-TZP. On the other hand, the highest value found in tubular sintering at 1400 ° C without the presence of H2 for pure Y-TZP was of the order of 96.76%. The hardness values were higher in the sintered samples in SPS, however the fracture toughness showed not to change as a function of the content of graphene. SEM images showed that there was a variation of grain size according to the presence of graphene and the sintering method. According to the results of this study it was concluded that the process developed allowed the creation of a graphene-zirconia ceramic composite which can be characterized by various analytical methods. The theoretical density of the composite developed was not achieved by any of the sintering methods used (tubular or SPS) nor by varying the temperature. For tubular sintered specimens, the higher sintering temperature (1400 ° C) and the presence of H2 gas did not improve densification. In addition, these specimens had increased hardness with increasing graphene concentration, however, their fracture toughness was not affected by graphene content. For sintered specimens by SPS, the sintering temperature of 1350 ° C resulted in better densification values. In addition, for this type of sintering, both hardness and fracture toughness were affected by the content of graphene
14

Desenvolvimento de sensores eletroquímicos de carbono visando à detecção de furosemida em amostras farmacêuticas e clínicas / Development of carbon electrochemical sensors for the detection of furosemide in pharmaceutical and clinical samples

Vanessa Neiva de Ataide 03 April 2018 (has links)
Nos últimos anos, materiais baseados em grafeno têm atraído grande interesse na área eletroquímica devido às suas excelentes propriedades eletrônicas. Neste trabalho, apresentamos a obtenção de óxido de grafeno reduzido utilizando métodos eletroquímicos. A redução eletroquímica do óxido de grafeno (OG) foi realizada na superfície de um eletrodo de carbono vítreo (ECV) utilizando voltametria cíclica. O óxido de grafeno reduzido eletroquimicamente (OG-RE) foi caracterizado utilizando espectroscopia Raman, microscopia eletrônica de varredura (MEV), microscopia de força atômica (MFA), espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de impedância eletroquímica. A relação ID/IG obtida através dos espectros Raman do OG e do OG-RE foram de 0,98 e 1,15, respectivamente, indicando que o processo de redução resultou em uma maior desorganização estrutural. A espectroscopia de fotoelétrons de raios-X mostrou que a proporção entre C e O no OG foi de 45,7% e, que após a redução eletroquímica essa relação diminuiu para 38,5%. O eletrodo modificado com OG-RE foi empregado para quantificação de furosemida (FUR) em amostras farmacêuticas utilizando voltametria de pulso diferencial e análise por injeção em fluxo com detecção amperométrica. Os limites de detecção e quantificação calculados para o método proposto foram de 0,35 e 1,18 µmol L-1, respectivamente. Visando à aplicação em amostras de interesse clínico, fabricou-se um sensor descartável e de baixo custo para a detecção de FUR utilizando papel sulfite pintado com lápis de desenho e ativado por laser de CO2. Os estudos voltamétricos utilizando o [Ru(NH3)6]Cl3 mostraram que o transporte de massa neste dispositivo foi governado por difusão e que o tratamento com laser diminui a resistência a transferência de carga, assim como resultou em um menor problema relacionado ao envenenamento da superfície do eletrodo / In recent years, graphene-based materials have attracted great interest in the area of electrochemistry due to its excellent electronic properties. In this work, we present the production of reduced graphene oxide using electrochemical methods. The electrochemical reduction of graphene oxide (GO) was carried out on the surface of a glassy carbon electrode (GCE) using the cyclic voltammetry technique. Electrochemically reduced graphene oxide (ER-GO) was characterized using Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Xray excited photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). ID / IG ratio obtained through Raman spectra of GO and ER-GO were 0.98 and 1.15, respectively, indicating that the reduction process resulted in greater structural disorganization. XPS showed that the ratio between C and O in the GO was 45.7% and that after electrochemical reduction this ratio decreased to 38.5%. The ER-GO modified electrode was used as a sensor for furosemide (FUR) in pharmaceutical samples using the techniques of differential pulse voltammetry and flow injection analysis with amperometric detection. The limits of detection and quantification for the proposed method were 0.35 and 1.18 µmol L-1, respectively. Aiming to the application in clinical samples a disposable, low-cost paper-based sensor for the detection of FUR was fabricated using office paper painted with drawing pencil and activated by CO2 laser. Voltammetric studies using [Ru(NH3)6]Cl3 have shown that mass transport in this device was controlled by diffusion and the laser decreases resistance to charge transfer, as well as, avoided the problem with electrode surface poisoning
15

Desenvolvimento de sensores eletroquímicos de carbono visando à detecção de furosemida em amostras farmacêuticas e clínicas / Development of carbon electrochemical sensors for the detection of furosemide in pharmaceutical and clinical samples

Ataide, Vanessa Neiva de 03 April 2018 (has links)
Nos últimos anos, materiais baseados em grafeno têm atraído grande interesse na área eletroquímica devido às suas excelentes propriedades eletrônicas. Neste trabalho, apresentamos a obtenção de óxido de grafeno reduzido utilizando métodos eletroquímicos. A redução eletroquímica do óxido de grafeno (OG) foi realizada na superfície de um eletrodo de carbono vítreo (ECV) utilizando voltametria cíclica. O óxido de grafeno reduzido eletroquimicamente (OG-RE) foi caracterizado utilizando espectroscopia Raman, microscopia eletrônica de varredura (MEV), microscopia de força atômica (MFA), espectroscopia de fotoelétrons excitados por raios-X (XPS) e espectroscopia de impedância eletroquímica. A relação ID/IG obtida através dos espectros Raman do OG e do OG-RE foram de 0,98 e 1,15, respectivamente, indicando que o processo de redução resultou em uma maior desorganização estrutural. A espectroscopia de fotoelétrons de raios-X mostrou que a proporção entre C e O no OG foi de 45,7% e, que após a redução eletroquímica essa relação diminuiu para 38,5%. O eletrodo modificado com OG-RE foi empregado para quantificação de furosemida (FUR) em amostras farmacêuticas utilizando voltametria de pulso diferencial e análise por injeção em fluxo com detecção amperométrica. Os limites de detecção e quantificação calculados para o método proposto foram de 0,35 e 1,18 µmol L-1, respectivamente. Visando à aplicação em amostras de interesse clínico, fabricou-se um sensor descartável e de baixo custo para a detecção de FUR utilizando papel sulfite pintado com lápis de desenho e ativado por laser de CO2. Os estudos voltamétricos utilizando o [Ru(NH3)6]Cl3 mostraram que o transporte de massa neste dispositivo foi governado por difusão e que o tratamento com laser diminui a resistência a transferência de carga, assim como resultou em um menor problema relacionado ao envenenamento da superfície do eletrodo / In recent years, graphene-based materials have attracted great interest in the area of electrochemistry due to its excellent electronic properties. In this work, we present the production of reduced graphene oxide using electrochemical methods. The electrochemical reduction of graphene oxide (GO) was carried out on the surface of a glassy carbon electrode (GCE) using the cyclic voltammetry technique. Electrochemically reduced graphene oxide (ER-GO) was characterized using Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Xray excited photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). ID / IG ratio obtained through Raman spectra of GO and ER-GO were 0.98 and 1.15, respectively, indicating that the reduction process resulted in greater structural disorganization. XPS showed that the ratio between C and O in the GO was 45.7% and that after electrochemical reduction this ratio decreased to 38.5%. The ER-GO modified electrode was used as a sensor for furosemide (FUR) in pharmaceutical samples using the techniques of differential pulse voltammetry and flow injection analysis with amperometric detection. The limits of detection and quantification for the proposed method were 0.35 and 1.18 µmol L-1, respectively. Aiming to the application in clinical samples a disposable, low-cost paper-based sensor for the detection of FUR was fabricated using office paper painted with drawing pencil and activated by CO2 laser. Voltammetric studies using [Ru(NH3)6]Cl3 have shown that mass transport in this device was controlled by diffusion and the laser decreases resistance to charge transfer, as well as, avoided the problem with electrode surface poisoning
16

Síntese e processamento de compósito cerâmico zircônia-grafeno / Synthesis and processing of zirconia-graphene ceramic composite

Diego Santos Manarão 27 February 2018 (has links)
O objetivo desse trabalho foi desenvolver um compósito cerâmico de zircônia-grafeno para aplicação odontológica. Este estudo avaliou o efeito do pó de partida, concentração de grafeno e da temperatura de sinterização sobre as propriedades mecânicas (dureza e tenacidade à fratura) do compósito desenvolvido. Para isto foram sintetizados os pós de Y-TZP a partir de soluções de óxido-cloreto de zircônio e cloreto de ítrio na proporção desejada de 3mol% através da rota de co-precipitação em solução de hidróxido de amônio seguido por uma série de lavagens em água, etanol e butanol com posterior destilação azeotrópica, secagem, moagem e calcinação. O grafeno foi obtido a partir da exfoliação química de grafite pelo método de Hummers [40] modificado por Marcano [39], o que resultou em um gel acastanhado que foi submetido a lavagem por centrifugação, secagem e desaglomeração em almofariz de ágata, resultando, por fim, no óxido de grafeno. Uma segunda etapa foi o processo de redução química com ácido ascórbico para obtenção de óxido de grafeno reduzido, um pó de coloração escura que foi adicionado à Y-TZP para a obtenção do compósito nas diversas concentrações (em mol%) que foram estudadas: (0,01%, 0,05%, 0,10%, 0,50%, 1,00% e 2,00%). Os pós foram caracterizados por termogravimetria, difração de raios X e espectroscopia (FT-IR). Os espécimes foram confeccionados em matriz metálica cilíndrica e sinterizados em forno tubular em atmosfera inerte. Outros espécimes foram confeccionados em matriz de grafite de alta densidade e sinterizados por Spark Plasma Sintering (SPS). Todas as amostras foram caracterizadas por meio de ensaios de densidade, dureza Vickers, tenacidade à fratura e microscopia eletrônica de varredura. Os maiores valores de densidade relativa foram observados para as amostras sinterizadas em SPS, sendo que se obteve valor de densidade relativa de 98,7 % para a concentração de 0,50% de grafeno e 98,4% para a Y-TZP pura. Por outro lado, o maior valor encontrado em sinterização em atmosfera a 1400°C sem a presença de H2 para Y-TZP pura foi da ordem de 96,76%. Os valores de dureza foram maiores nas amostras sinterizadas em SPS, no entanto a tenacidade à fratura mostrou não se alterar em função do conteúdo de grafeno. As fotomicrografias de MEV mostraram que houve uma variação de tamanho de grão de acordo com a presença do grafeno e do método de sinterização. De acordo com os resultados obtidos neste trabalho foi possível concluir que o processamento desenvolvido permitiu a criação de um compósito cerâmico zircônia-grafeno que pôde ser caracterizado por diversos métodos analíticos. A densidade teórica do compósito desenvolvido não foi alcançada por meio de nenhum dos métodos de sinterização utilizados (Tubular ou SPS) e nem variando-se a temperatura. Para espécimes sinterizados em atmosfera inerte, a maior temperatura de sinterização (1400°C) e a presença do gás H2 não melhorou a densificação. Além disso, esses espécimes tiveram aumento da dureza com o aumento da concentração de grafeno, entretanto, a sua tenacidade à fratura não foi afetada pelo teor de grafeno. Para espécimes sinterizados por meio de SPS, a temperatura de sinterização de 1350°C resultou em melhores valores de densificação. Além disso, para este tipo de sinterização, tanto a dureza como a tenacidade à fratura foram afetadas pelo teor de grafeno. / The objective of this work was to develop a zirconia-graphene ceramic composite for dental application. The study evaluated the effect of the starting powder effect, graphene concentration and sintering temperature on the mechanical properties of the composite. For this, the Y-TZP powders were synthesized from zirconium chloride and yttrium chloride solutions in the desired ratio of 3 mol% through the co-precipitation route in ammonium hydroxide solution followed by a series of washes in water, ethanol and butanol with subsequent azeotropic distillation, drying, grinding and calcination. Graphene was obtained from the chemical exfoliation of graphite by the method of Humans modified by Marcano, which resulted in a brownish gel that was subjected to washing by centrifugation, drying and deagglomeration in agate mortar, resulting finally in the graphene oxide. A second step was the chemical reduction with ascorbic acid to obtain reduced graphene oxide, a dark-colored powder that was added to the Y-TZP to obtain the composite in the various concentrations (in mol%) that were studied (0, 01%, 0.05%, 0.10%, 0.50%, 1.00% and 2.00%). The powders were characterized by thermogravimetry, X-ray diffraction and spectroscopy (FT-IR). The specimens were made in cylindrical metallic matrix and sintered in a tubular oven. Other samples were made in high density graphite matrix and sintered by Spark Plasma Sintering (SPS). All samples were characterized by means of density tests, Vickers hardness, fracture toughness and scanning electron microscopy. The highest values of relative density were observed for the sintered samples in SPS. A relative density of 98.7% was obtained for the 0.50% concentration of graphene and 98.4% for the pure Y-TZP. On the other hand, the highest value found in tubular sintering at 1400 ° C without the presence of H2 for pure Y-TZP was of the order of 96.76%. The hardness values were higher in the sintered samples in SPS, however the fracture toughness showed not to change as a function of the content of graphene. SEM images showed that there was a variation of grain size according to the presence of graphene and the sintering method. According to the results of this study it was concluded that the process developed allowed the creation of a graphene-zirconia ceramic composite which can be characterized by various analytical methods. The theoretical density of the composite developed was not achieved by any of the sintering methods used (tubular or SPS) nor by varying the temperature. For tubular sintered specimens, the higher sintering temperature (1400 ° C) and the presence of H2 gas did not improve densification. In addition, these specimens had increased hardness with increasing graphene concentration, however, their fracture toughness was not affected by graphene content. For sintered specimens by SPS, the sintering temperature of 1350 ° C resulted in better densification values. In addition, for this type of sintering, both hardness and fracture toughness were affected by the content of graphene

Page generated in 0.0969 seconds