Spelling suggestions: "subject:"επιλογή"" "subject:"ἐπιλογή""
11 |
Βέλτιστη επιλογή χαρτοφυλακίουΠαπανικολάου, Απόστολος 28 September 2010 (has links)
To θέμα της συγκεκριμένης διπλωματικής εργασίας είναι η βέλτιστη επιλογή
χαρτοφυλακίου, η οποία μπορεί να επιτευχθεί μέσω του προσδιορισμού του
βέλτιστου μεγέθους του χαρτοφυλακίου. Στo πρώτο κεφάλαιο, που αποτελεί και την
εισαγωγή, διατυπώνεται ο αντικειμενικός σκοπός της διπλωματικής εργασίας και
αναφέρεται η δομή της εργασίας. Στο δεύτερο κεφάλαιο αναφέρονται συνοπτικά η
σύγχρονη θεωρία χαρτοφυλακίου και το Υπόδειγμα της Αποτίμησης Κεφαλαιακών
Στοιχείων (CAPM). Στο τρίτο κεφάλαιο αναφέρονται συνοπτικά 4 μελέτες σχετικά με
τον προσδιορισμό του βέλτιστου μεγέθους χαρτοφυλακίου. Στο τέταρτο κεφάλαιο
παρουσιάζεται η εμπειρική εφαρμογή. Στο πέμπτο κεφάλαιο παρουσιάζονται τα
εμπειρικά αποτελέσματα της ανάλυσης. Στο έκτο κεφάλαιο διατυπώνονται τα
συμπεράσματα που προκύπτουν από την ανάλυση και, επιπλέον, αναφέρεται η
δυνατότητα για μελλοντική περαιτέρω έρευνα. / The subject of this diploma thesis is the optimal portfolio allocation, which can
be achieved through the assignment of the optimal portfolio size. In the first chapter,
which consists the introduction, the subjective purpose and the structure of the thesis
are given. In the second chapter, the Modern Portfolio Theory and the Capital Asset
Pricing Model are referred in brief. In the third chapter, 4 studies relative to the
assignment of the optimal portfolio size are referred briefly. In the fourth chapter, the
empirical application is presented. In the fifth chapter, the empirical results of the
analysis are also presented. Finally, in the sixth chapter, the conclusions are given and,
additionally, the possibility for future further research is referred.
|
12 |
Διαγενεακή κινητικότητα και αντικείμενο σπουδών των πρωτοετών φοιτητών της πανεπιστημιακής εκπαίδευσης στην Ελλάδα / Intergenerational mobility and how people choose university majors of study in GreeceΚουμπούλη, Νικολίτσα 08 July 2011 (has links)
Στην παρούσα διπλωματική εργασία διερευνήθηκε η επιλογή των πρωτοετών φοιτητών αναφορικά με το τμήμα της πανεπιστημιακής τους εκπαίδευσης στην Ελλάδα. Ειδικότερα, αυτή η επιλογή αξιολογείται μέσω δυο μεταβλητών. Η πρώτη αφορά το αντικείμενο σπουδών με βάση το επιστημονικό περιεχόμενο του προγράμματος σπουδών και η δεύτερη αφορά τις προεξοφλημένες αποδόσεις ανά αντικείμενο σπουδών. Για λόγους εκτίμησης χρησιμοποιήθηκαν δεδομένα για το έτος 2006 από το Ατομικό Δελτίο Φοιτητή-Σπουδαστή της Ελληνικής Στατιστικής Αρχής (Ελ.ΣΤΑΤ) και εφαρμόστηκαν υποδείγματα διακριτής επιλογής με διάταξη (ordered probit) αλλά και χωρίς διάταξη (binary probit). Ως επεξηγηματικές μεταβλητές χρησιμοποιήθηκαν το επίπεδο εκπαίδευσης, το επάγγελμα των γονέων και μια ευρεία δέσμη δημογραφικών μεταβλητών (ηλικία, φύλο, τόπος γέννησης, κ.λπ.). Όπως προέκυψε από τα αποτελέσματα της οικονομετρικής ανάλυσης η επιλογή του πανεπιστημιακού τμήματος (είτε με βάση το αντικείμενο σπουδών είτε με βάση τις προεξοφλημένες αποδόσεις) επηρεάζεται σημαντικά από το οικογενειακό υπόβαθρο (εκπαίδευση, επάγγελμα) του πρωτοετή φοιτητή. Επίσης, διερευνήθηκε η σχέση μεταξύ του οικογενειακού εισοδήματος και της επιλογής πανεπιστημιακού τμήματος με βάση τις μελλοντικές αποδόσεις και βρέθηκε να υπάρχει μια θετική και στατιστικά σημαντική σχέση μεταξύ αυτών των δυο μεταβλητών. Με βάση τα αποτελέσματα της παρούσας εργασίας, η δια-γενεακή κινητικότητα στην Ελλάδα (που σχετίζεται με την επιλογή του πανεπιστημιακού τμήματος από τους πρωτοετείς φοιτητές) αναμένεται να είναι χαμηλή. / In this thesis is investigated the choice of the university major of study of the Greek freshmen. Specifically, this choice of major is assessed through two variables. The first is the object of study based on the scientific content of the curriculum and the second is the discounted returns of education per major of study. For assessment purposes we used data for the year 2006 from the Greek statistic authority (el.stat)and we applied discrete choice models by order (ordered probit) and also without order (binary probit). As explanatory variables are used the educational attainment and occupation of parents as well as a wide range of demographic variables (age,sex,place of birth, etc). As the results of the econometric analysis demonstrate the choice of university department(regardless the type of the discrete choice model we use) is significantly influenced by the family background and their social class. It is also investigated the relationship between family income and choice of university department based on future earnings and is found to be a positive and statistically significant relationship between these two variables. Based on the results of this study the intergenerational mobility in Greece (associated with the major of study the freshmen choose) is expected to be low.
|
13 |
Η πολυκριτηριακή ανάλυση στην αξιολόγηση και επιλογή προμηθευτών / Multicriteria analysis in vendor selection and evaluationΠαπαγιαννάκης, Νικόλαος 01 September 2009 (has links)
Η αξιολόγηση και επιλογή προμηθευτών αποτελεί μια απαραίτητη επιχειρησιακή
λειτουργία για την επίτευξη βέλτιστων δυνατών προμηθειών. Λόγω της φύσης του
προβλήματος αυτού, οι μέθοδοι Πολυκριτηριακής Ανάλυσης μπορούν να παίξουν
αποφασιστικό ρόλο στην επίλυσή του.
Η εργασία αυτή μελετά και παρουσιάζει τα πιο συνηθισμένα κριτήρια καθώς και τις
πιο διαδεδομένες μεθόδους της Πολυκριτηριακής Ανάλυσης για την αξιολόγηση και
επιλογή προμηθευτών των επιχειρήσεων.
Στο πρώτο μέρος της εργασίας αυτής, παρουσιάζεται το θεωρητικό υπόβαθρο, όπου
γίνεται αναφορά στις έρευνες προηγούμενων μελετητών του προβλήματος της
αξιολόγησης και επιλογής προμηθευτών, ομαδοποιώντας μια σειρά από τους
σημαντικότερους παράγοντες για την επιλογή προμηθευτών. Στη συνέχεια
παρουσιάζονται οι πλέον χρηστικές μέθοδοι Πολυκριτηριακής Ανάλυσης στην
αξιολόγηση προμηθευτών με αντίστοιχα παραδείγματα.
Στο δεύτερο μέρος γίνεται εφαρμογή της μεθόδου της Αναλυτικής Διαδικασίας
Ιεράρχησης (ΑΗΡ) συνδυάζοντάς την με Γραμμικό Προγραμματισμό, επί των
πραγματικών δεδομένων της μικρομεσαίας επιχείρησης επεξεργασίας νερού Health
Affair, για αξιολόγηση και επιλογή των προμηθευτών της. / Vendor selection and evaluation is a very important process for all kinds of firms.
Due to the nature of the vendor selection problem, Multicriteria methods can play a
decisive role to its solution.
This work examines and presents the most commonly used criteria and the most
widespread Multicriteria methods for vendor selection and evaluation.
In the first part of the project, the Theoretical Framework is presented, where the
work of previous researchers is mentioned, by grouping some of the most vital criteria
in vendor selection process. Moreover, the most useful Multicriteria methods in
vendor selection are analyzed into their corresponding examples.
In the second part of the project, the method of Analytical Hierarchy Process (AHP)
in combination with Linear Programming is implemented on the real data of a Greek
water treatment SME.
|
14 |
Text mining : μια νέα προτεινόμενη μέθοδος με χρήση κανόνων συσχέτισηςΝασίκας, Ιωάννης 14 September 2007 (has links)
Η εξόρυξη κειμένου (text mining) είναι ένας νέος ερευνητικός τομέας που προσπαθεί να επιλύσει το πρόβλημα της υπερφόρτωσης πληροφοριών με τη χρησιμοποίηση των τεχνικών από την εξόρυξη από δεδομένα (data mining), την μηχανική μάθηση (machine learning), την επεξεργασία φυσικής γλώσσας (natural language processing), την ανάκτηση πληροφορίας (information retrieval), την εξαγωγή πληροφορίας (information extraction) και τη διαχείριση γνώσης (knowledge management).
Στο πρώτο μέρος αυτής της διπλωματικής εργασίας αναφερόμαστε αναλυτικά στον καινούριο αυτό ερευνητικό τομέα, διαχωρίζοντάς τον από άλλους παρεμφερείς τομείς.
Ο κύριος στόχος του text mining είναι να βοηθήσει τους χρήστες να εξαγάγουν πληροφορίες από μεγάλους κειμενικούς πόρους. Δύο από τους σημαντικότερους στόχους είναι η κατηγοριοποίηση και η ομαδοποίηση εγγράφων.
Υπάρχει μια αυξανόμενη ανησυχία για την ομαδοποίηση κειμένων λόγω της εκρηκτικής αύξησης του WWW, των ψηφιακών βιβλιοθηκών, των ιατρικών δεδομένων, κ.λ.π.. Τα κρισιμότερα προβλήματα για την ομαδοποίηση εγγράφων είναι η υψηλή διαστατικότητα του κειμένου φυσικής γλώσσας και η επιλογή των χαρακτηριστικών γνωρισμάτων που χρησιμοποιούνται για να αντιπροσωπεύσουν μια περιοχή.
Κατά συνέπεια, ένας αυξανόμενος αριθμός ερευνητών έχει επικεντρωθεί στην έρευνα για τη σχετική αποτελεσματικότητα των διάφορων τεχνικών μείωσης διάστασης και της σχέσης μεταξύ των επιλεγμένων χαρακτηριστικών γνωρισμάτων που χρησιμοποιούνται για να αντιπροσωπεύσουν το κείμενο και την ποιότητα της τελικής ομαδοποίησης. Υπάρχουν δύο σημαντικοί τύποι τεχνικών μείωσης διάστασης: οι μέθοδοι «μετασχηματισμού» και οι μέθοδοι «επιλογής».
Στο δεύτερο μέρος αυτής τη διπλωματικής εργασίας, παρουσιάζουμε μια καινούρια μέθοδο «επιλογής» που προσπαθεί να αντιμετωπίσει αυτά τα προβλήματα. Η προτεινόμενη μεθοδολογία είναι βασισμένη στους κανόνες συσχέτισης (Association Rule Mining). Παρουσιάζουμε επίσης και αναλύουμε τις εμπειρικές δοκιμές, οι οποίες καταδεικνύουν την απόδοση της προτεινόμενης μεθοδολογίας. Μέσα από τα αποτελέσματα που λάβαμε διαπιστώσαμε ότι η διάσταση μειώθηκε. Όσο όμως προσπαθούσαμε, βάσει της μεθοδολογίας μας, να την μειώσουμε περισσότερο τόσο χανόταν η ακρίβεια στα αποτελέσματα. Έγινε μια προσπάθεια βελτίωσης των αποτελεσμάτων μέσα από μια διαφορετική επιλογή των χαρακτηριστικών γνωρισμάτων. Τέτοιες προσπάθειες συνεχίζονται και σήμερα.
Σημαντική επίσης στην ομαδοποίηση των κειμένων είναι και η επιλογή του μέτρου ομοιότητας. Στην παρούσα διπλωματική αναφέρουμε διάφορα τέτοια μέτρα που υπάρχουν στην βιβλιογραφία, ενώ σε σχετική εφαρμογή κάνουμε σύγκριση αυτών.
Η εργασία συνολικά αποτελείται από 7 κεφάλαια: Στο πρώτο κεφάλαιο γίνεται μια σύντομη ανασκόπηση σχετικά με το text mining. Στο δεύτερο κεφάλαιο περιγράφονται οι στόχοι, οι μέθοδοι και τα εργαλεία που χρησιμοποιεί η εξόρυξη κειμένου. Στο τρίτο κεφάλαιο παρουσιάζεται ο τρόπος αναπαράστασης των κειμένων, τα διάφορα μέτρα ομοιότητας καθώς και μια εφαρμογή σύγκρισης αυτών. Στο τέταρτο κεφάλαιο αναφέρουμε τις διάφορες μεθόδους μείωσης της διάστασης και στο πέμπτο παρουσιάζουμε την δικιά μας μεθοδολογία για το πρόβλημα. Έπειτα στο έκτο κεφάλαιο εφαρμόζουμε την μεθοδολογία μας σε πειραματικά δεδομένα. Η εργασία κλείνει με τα συμπεράσματα μας και κατευθύνσεις για μελλοντική έρευνα. / Text mining is a new searching field which tries to solve the problem of information overloading by using techniques from data mining, natural language processing, information retrieval, information extraction and knowledge management.
At the first part of this diplomatic paper we detailed refer to this new searching field, separated it from all the others relative fields.
The main target of text mining is helping users to extract information from big text resources. Two of the most important tasks are document categorization and document clustering.
There is an increasing concern in document clustering due to explosive growth of the WWW, digital libraries, technical documentation, medical data, etc. The most critical problems for document clustering are the high dimensionality of the natural language text and the choice of features used to represent a domain.
Thus, an increasing number of researchers have concentrated on the investigation of the relative effectiveness of various dimension reduction techniques and of the relationship between the selected features used to represent text and the quality of the final clustering. There are two important types of techniques that reduce dimension: transformation methods and selection methods.
At the second part of this diplomatic paper we represent a new selection method trying to tackle these problems. The proposed methodology is based on Association Rule Mining. We also present and analyze empirical tests, which demonstrate the performance of the proposed methodology. Through the results that we obtained we found out that dimension has been reduced. However, the more we have been trying to reduce it, according to methodology, the bigger loss of precision we have been taking. There has been an effort for improving the results through a different feature selection. That kind of efforts are taking place even today.
In document clustering is also important the choice of the similarity measure. In this diplomatic paper we refer several of these measures that exist to bibliography and we compare them in relative application.
The paper totally has seven chapters. At the first chapter there is a brief review about text mining. At the second chapter we describe the tasks, the methods and the tools are used in text mining. At the third chapter we give the way of document representation, the various similarity measures and an application to compare them. At the fourth chapter we refer different kind of methods that reduce dimensions and at the fifth chapter we represent our own methodology for the problem. After that at the sixth chapter we apply our methodology to experimental data. The paper ends up with our conclusions and directions for future research.
|
15 |
Μη καταστροφικός έλεγχος μεταλλικών κατασκευών με ψηφιακή επεξεργασία σημάτων ακουστικής εκπομπής / Non destructive testing of metal constructions with digital processing of acoustic emission signalsΚαππάτος, Βασίλειος 26 October 2007 (has links)
Στα πλαίσια της διατριβής, πραγματοποιήθηκε μελέτη και ανάλυση σημάτων πηγών ακουστικής εκπομπής, προτάθηκαν νέες ολοκληρωμένες μεθοδολογίες βασισμένες σε συμβατικές αλλά και προχωρημένες τεχνικές επεξεργασίας και ανάλυσης δεδομένων για την εξαγωγή εκείνων των χαρακτηριστικών που διαχωρίζουν τα σήματα ακουστικής εκπομπής από τον περιβάλλοντα θόρυβο. Εξετάσθηκαν ποια χαρακτηριστικά γνωρίσματα (παράμετροι) περιέχουν σημαντικό τμήμα της “πληροφορίας” έτσι ώστε στη συνέχεια χρησιμοποιώντας προχωρημένες μεθόδους αναγνώρισης προτύπων να επιτευχθεί ανίχνευση και χαρακτηρισμός ρωγμοειδών αστοχιών σε θορυβώδεις συνθήκες αλλά και σε σύνθετες κατασκευές. Συνοπτικά στην παρούσα διατριβή προτάθηκε και αξιολογήθηκε μια νέα μέθοδος για την εκτίμηση της βέλτιστης τοποθέτησης αισθητήρων. Προτάθηκαν δύο μέθοδοι για τον εντοπισμό θέσης πηγής ακουστικής εκπομπής. Πραγματοποιήθηκε για πρώτη φορά εξαγωγή ενενήντα παραμέτρων, εκ’ των οποίων οι εξήντα επτά προσδιορίστηκαν μετά από επεξεργασία του σήματος στο πεδίο του χρόνου ενώ οι υπόλοιπες είκοσι τρεις με επεξεργασία του σήματος στο πεδίο της συχνότητας. H μείωση του αριθμού των παραμέτρων, χωρίς όμως να μειώνεται ταυτόχρονα και η αξιοπιστία του ταξινομητή, αποτελεί ένα μεγάλος μέρος έρευνας που πραγματοποιήθηκε στα πλαίσια εκπόνησης της παρούσας διατριβής. Προτάθηκαν και αξιολογήθηκαν τέσσερις μέθοδοι επιλογής παραμέτρων. Για πρώτη φορά κατασκευάστηκαν και αξιολογήθηκαν ολοκληρωμένα συστήματα ανίχνευσης αστοχιών τα οποία έχουν την δυνατότητα να ανιχνεύουν τη δημιουργία ρωγμών λόγω καταπόνησης σε καιρικές συνθήκες βροχής. Στο τελευταίο μέρος της διατριβής κατασκευάστηκε και αξιολογήθηκε ένα καινοτόμο σύστημα χαρακτηρισμού ρωγμοειδών γεγονότων για τις ενισχύσεις πλοίων, υπό προσομοιωμένες συνθήκες λειτουργίας του πλοίου. / The present PhD thesis dealt with the following subjects: best sensors position, source location, features extraction and features selection, crack detection on raining conditions, crack characterization in ship structures.
A new method, for the estimation of the best sensors position that used for accurate acoustic emission source location on empty spherical surfaces, is presented. Two acoustic emission source location methods are presented and evaluated. In this thesis, an extensive set of ninety features (forty-one novel features) are extracted from acoustic emission signals, sixty-seven in the time domain and twenty-three by processing the signal in the frequency domain. The features are estimated for two time-frames the first has 1msec duration (typically the signal does not contain all the reflections from the material edges) and the second has 32msec of the normalized signal, which is not separated by its reflections, in small structures. To achieve robust performance both in accuracy and computational complexity of any classification method, it is necessary to pick up the most relevant features. Four features selection methods are proposed and evaluated. In outside constructions (e.g bridges, tanks, ships etc) real-life noises reduce significantly the capability of location and characterization acoustic emission sources. Among the most important types of noise is the rain, producing signal similar to crack. A completed system of detection crack on condition of rain is estimated. An efficient system for automatic and real-time characterization of crack events using a robust set of features to monitor crack events in ship structures is presented. In normal operation of ship, real-life noises (e.g engines, sea waves, weather conditions etc) reduce significantly the capability of location and characterization of crack events.
|
16 |
Αυτόματη παραγωγή έμπειρων συστημάτων με συντελεστές βεβαιότητας από σύνολα δεδομένων / Automatic generation of expert systems with certainty factors from datasetsΚόβας, Κωνσταντίνος 11 August 2011 (has links)
Σκοπός της συγκεκριμένης εργασίας είναι η έρευνα πάνω στον τομέα της αυτόματης παραγωγής έμπειρων συστημάτων, ανακαλύπτοντας γνώση μέσα σε σύνολα δεδομένων και αναπαριστώντας την με την μορφή κανόνων. Ουσιαστικά πρόκειται για μια μέθοδο επιτηρούμενης μάθησης όπως η εξόρυξη κανόνων ταξινόμησης, ωστόσο ο στόχος δεν είναι αποκλειστικά η ταξινόμηση, αλλά και η τήρηση σημαντικών προδιαγραφών ενός έμπειρου συστήματος όπως η επεξήγηση, η ενημέρωση για νέα δεδομένα κ.α. Στα πλαίσια της προπτυχιακής μου εργασίας αναπτύχθηκε ένα εργαλείο που είχε σκοπό την σύγκριση μεθόδων για συνδυασμό αβέβαιων συμπερασμάτων για το ίδιο γεγονός, στο μοντέλο των Συντελεστών Βεβαιότητας. Το εργαλείο έδινε την δυνατότητα να παραχθούν Έμπειρα Συστήματα (στη γλώσσα CLIPS) που χρησιμοποιούν τις παραπάνω μεθόδους. Σκοπός της παρούσας εργασίας ήταν η διερεύνηση του τομέα της μηχανικής μάθησης και η επέκταση του υπάρχοντος εργαλείου, ώστε να παράγει έμπειρα συστήματα με έναν πιο αυτόματο, αποδοτικό και λειτουργικό τρόπο. Πιο συγκεκριμένα τροποποιήθηκε η αρχιτεκτονική για την υποστήριξη μεταβλητών εξόδου με περισσότερες από δυο κλάσεις (Multiclass Classification). Επίσης έγινε επέκταση ώστε να μπορούν να εξαχθούν κανόνες για περισσότερες μεταβλητές του συνόλου δεδομένων (εκτός δηλαδή από την μεταβλητή εξόδου), για τις οποίες δεν χρειάζεται πλέον να γνωρίζει τιμές ο τελικός χρήστης του έμπειρου συστήματος. Η επέκταση αυτή δίνει την δυνατότητα να σχεδιαστούν πιο πολύπλοκες ιεραρχίες κανόνων, που ακολουθούν μια δενδρική δομή, εύκολα ερμηνεύσιμη από τον άνθρωπο. Το μοντέλο συντελεστών βεβαιότητας επανασχεδιάστηκε, ενώ πλέον προσφέρεται και ένας εναλλακτικός τρόπος υπολογισμού των συντελεστών βεβαιότητας των κανόνων ταξινόμησης ο οποίος βασίζεται στον ορισμό τους στο έμπειρο σύστημα MYCIN. Τα αποτελέσματα έδειξαν ότι σε μη ισορροπημένα σύνολα δεδομένων η μέθοδος αυτή ευνοεί την πρόβλεψη για την κλάση μειοψηφίας. Τεχνικές επιλογής υποσυνόλων χαρακτηριστικών, δίνουν την δυνατότητα αυτοματοποίησης σε μεγάλο βαθμό της διαδικασίας παραγωγής του έμπειρου συστήματος με τρόπο αποδοτικό. Άλλες προσθήκες είναι η δυνατότητα δημιουργίας συστημάτων που μπορούν να ενημερώνονται δυναμικά αξιοποιώντας νέα δεδομένα για το πρόβλημα, η παραγωγή κανόνων και συναρτήσεων για την αλληλεπίδραση με τον χρήστη, η παροχή γραφικού περιβάλλοντος για το παραγόμενο έμπειρο σύστημα κ.α. / The main objective of this thesis is to present a method for automatic generation of expert systems, by extracting knowledge from datasets and representing it in the form of production rules. We use a supervised machine learning method, resembling Classification Rule Mining, although classification is not our only goal. Important operational characteristics of expert systems, like explanation of conclusions and dynamic update of the knowledge base, are also taken into account. Our approach is implemented within an existing tool, initially developed by us to compare methods for combining uncertain conclusions about the same event, based on the uncertainty model of Certainty Factors. That tool could generate Expert Systems (in CLIPS language) that use the above methods. The main aim of this thesis is to do research mainly on the field of machine learning in order to enhance the above mentioned tool for generating Expert Systems in a more automatic, efficient and functional fashion.
More specifically, the architecture has been modified to support output variables classified in more than two classes (Multiclass Classification). An extension of the system made it possible to generate classification rules for additional variables (apart from the output variable), for which the final user of the expert system cannot provide values. This gives the ability to design more complex rule hierarchies, which are represented in an easy-to-understand tree form. Furthermore, the certainty factors model has been revised and an additional method of computing them is offered, following the definitions in MYCIN’s model. Experimental results showed improved performance, especially for prediction of minority classes in imbalanced datasets. Feature ranking and subset selection techniques help to achieve the generation task in a more automatic and efficient way. Other enhancements include the ability to produce expert systems that dynamically update the certainty factors in their rules, the generation of rules and functions for interaction with the end-user and a graphical interface for the produced expert system.
|
17 |
Ταξινόμηση καρκινικών όγκων εγκεφάλου με χρήση μεθόδων μηχανικής μάθησηςΚανάς, Βασίλειος 29 August 2011 (has links)
Σκοπός αυτής της διπλωματικής εργασίας είναι να ερευνηθούν μέθοδοι μηχανικής μάθησης για την ταξινόμηση διαφόρων τύπων καρκινικών όγκων εγκεφάλου με χρήση δεδομένων μαγνητικής τομογραφίας. Η διάγνωση του τύπου του καρκίνου είναι σημαντική για τον κατάλληλο σχεδιασμό της θεραπείας. Γενικά η ταξινόμηση καρκινικών όγκων αποτελείται από επιμέρους βήματα, όπως καθορισμός των περιοχών ενδιαφέροντος (ROIs), εξαγωγή χαρακτηριστικών, επιλογή χαρακτηριστικών, ταξινόμηση. Η εργασία αυτή εστιάζει στα δύο τελευταία βήματα ώστε να εξαχθεί μια γενική επισκόπηση της επίδρασης των εκάστοτε μεθόδων όσον αφορά την ταξινόμηση των διαφόρων όγκων. Τα εξαγόμενα χαρακτηριστικά περιλαμβάνουν χαρακτηριστικά φωτεινότητας και περιγράμματος από συμβατικές τεχνικές απεικόνισης μαγνητικής τομογραφίας (Τ2, Τ1 με έγχυση σκιαγραφικού, Flair,Τ1) καθώς και μη συμβατικές τεχνικές (Μαγνητική τομογραφία αιματικής διήθησης ). Για την επιλογή των χαρακτηριστικών χρησιμοποιήθηκαν διάφορες μέθοδοι φιλτραρίσματος, όπως CFSsubset, wrapper, consistency σε συνδυασμό με μεθόδους αναζήτησης, όπως scatter, best first, greedy stepwise, με τη βοήθεια του πακέτου Waikato Environment for Knowledge Analysis (WEKA). Οι μέθοδοι εφαρμόστηκαν σε 101 ασθενείς με καρκινικούς όγκους εγκεφάλου οι οποίοι είχαν διαγνωστεί ως μετάσταση (24), μηνιγγίωμα (4), γλοίωμα βαθμού 2 (22), γλοίωμα βαθμού 3 (17) ή γλοίωμα βαθμού 4 (34) και επαληθεύτηκαν με τη στρατηγική του αχρησιμοποίητου παραδείγματος (Leave One Out-LOO) / The objective of this study is to investigate the use of pattern classification methods for distinguishing different types of brain tumors, such as primary gliomas from metastases, and also for grading of gliomas. A computer-assisted classification method combining conventional magnetic resonance imaging (MRI) and perfusion MRI is developed and used for differential diagnosis. The characterization and accurate determination of brain tumor grade and type is very important because it influences and specifies patient's treatment planning. The proposed scheme consists of several steps including ROI definition, feature extraction, feature selection and classification. The extracted features include tumor shape and intensity characteristics. Features subset selection is performed using two filtering methods, correlation-based feature selection method and consistency method, and a wrapper approach in combination with three different search algorithms (best first, greedy stepwise and scatter). These methods are implemented using the assistance of the WEKA software [20]. The highest binary classification accuracy assessed by leave-one-out (LOO) cross-validation on 102 brain tumors, is 94.1% for discrimination of metastases from gliomas, and 91.3% for discrimination of high grade from low grade neoplasms. Multi-class classification is also performed and 76.29% accuracy achieved.
|
18 |
Αναγνώριση συναισθημάτων από ομιλία με χρήση τεχνικών ψηφιακής επεξεργασίας σήματος και μηχανικής μάθησης / Emotion recognition from speech using digital signal processing and machine learning techniquesΚωστούλας, Θεόδωρος 28 February 2013 (has links)
Η παρούσα διδακτορική διατριβή πραγματεύεται προβλήματα που αφορούν το χώρο της τεχνολογίας ομιλίας, με στόχο τη αναγνώριση συναισθημάτων από ομιλία με χρήση τεχνικών ψηφιακής επεξεργασίας σήματος και μηχανικής μάθησης. Πιο αναλυτικά, στα πλαίσια της διατριβής προτάθηκαν και μελετήθηκαν καινοτόμες μέθοδοι σε μια σειρά από εφαρμογές που αξιοποιούν σύστημα αναγνώρισης συναισθηματικών καταστάσεων από ομιλία. Ο βασικός στόχος των μεθόδων ήταν η αντιμετώπιση των προκλήσεων που παρουσιάζονται όταν ένα σύστημα αναγνώρισης συναισθηματικών καταστάσεων καλείται να λειτουργήσει σε πραγματικές συνθήκες, με αυθόρμητες αντιδράσεις, ανεξαρτήτως ομιλητή.
Πιο συγκεκριμένα, στα πλαίσια της διατριβής, αξιολογήθηκε η συμπεριφορά ενός συστήματος αναγνώρισης συναισθημάτων σε προσποιητή ομιλία και σε διαφορετικές συνθήκες θορύβου, και συγκρίθηκε η απόδοση του συστήματος με την υποκειμενική αξιολόγηση των ακροατών. Επιπλέον, περιγράφηκε ο σχεδιασμός και η υλοποίηση βάση δεδομένων συναισθηματικής ομιλίας, όπως αυτή προκύπτει από την αλληλεπίδραση μη-έμπειρων χρηστών με ένα διαλογικό σύστημα και προτάθηκε ένα σύστημα το οποίο εντοπίζει αρνητικές συναισθηματικές καταστάσεις, στο ανεξάρτητου ομιλητή πρόβλημα, με χρήση μοντέλου Γκαουσιανών κατανομών. Η προτεινόμενη αρχιτεκτονική συνδυάζει παραμέτρους ομιλίας χαμηλού και υψηλού επιπέδου και εφαρμόζεται στα πραγματικά δεδομένα. Επίσης, αξιολογήθηκε και υλοποιήθηκε η πρακτική εφαρμογή ενός συστήματος αναγνώρισης συναισθημάτων βασισμένου σε οικουμενικό μοντέλο Γκαουσιανών κατανομών σε διαφορετικούς τύπους δεδομένων πραγματικής ζωής. Ακόμα, παρουσιάστηκε μια πρωτότυπη αρχιτεκτονική κατηγοριοποίησης για αναγνώριση συνυπαρχόντων συναισθημάτων από ομιλία προερχόμενη από αλληλεπίδραση σε πραγματικά περιβάλλοντα. Σε αντίθεση με γνωστές προσεγγίσεις, η προτεινόμενη αρχιτεκτονική μοντελοποιεί τις συνυπάρχουσες συναισθηματικές καταστάσεις μέσω της κατασκευής μιας πολυσταδιακής αρχιτεκτονικής κατηγοριοποίησης. Τα πειραματικά αποτελέσματα που διενεργήθηκαν υποδεικνύουν ότι η προτεινόμενη αρχιτεκτονική είναι πλεονεκτική για τις συναισθηματικές καταστάσεις που είναι πιο διαχωρίσιμες, γεγονός που οδηγεί σε βελτίωση της συνολικής απόδοσης του συστήματος. / In this doctoral dissertation a number of novel approaches were proposed and evaluated in different applications that utilize emotion awareness. The major target of the proposed methods was facing the difficulties existing, when an emotion recognition system is asked to operate in real-life conditions, where human speech is characterized by spontaneous and genuine formulations.
In detail, within the present dissertation, the performance of an emotion recognition system was evaluated, initially, in acted speech, under different noise conditions, and this performance was compared to the one of human listeners. Further, the design and implementation of a real world emotional speech corpus is described, as this results from the interaction of naive users with a smart home dialogue system. Moreover, a system which utilizes low and high level descriptors was suggested. The suggested architecture leads to significantly better performance in some working points of the integrated system in the dialogue system. Furthermore, we propose a novel multistage classification scheme for affect recognition from real-life speech. In contrast with conventional approaches for affect/emotion recognition from speech, the proposed scheme models co-occurring affective states by constructing a multistage classification scheme. The empirical experiments performed indicate that the proposed classification scheme offers an advantage for those classes that are more separable, which contributes for improving the overall performance of the affect recognition system.
|
19 |
Σχεδίαση παράλληλης διάταξης επεξεργαστών σε ένα chip : δημιουργία και μελέτη high radix RNS αθροιστήΓιαννοπούλου, Λεμονιά 09 July 2013 (has links)
Η άθροιση μεγάλων αριθμών είναι μια χρονοβόρα και ενεργοβόρα διαδικασία. Πολλές μέθοδοι έχουν αναπτυχθεί για να μειωθεί η καθυστέρηση υπολογισμού του αθροίσματος λόγω της μετάδοσης κρατουμένου. Τέτοιες είναι η πρόβλεψη κρατουμένου (carry look ahead) και η επιλογή κρατουμένου (carry select). Αυτές οι αρχιτεκτονικές δεν είναι επαρκώς επεκτάσιμες για μεγάλους αριθμούς (με πολλά bits) ή πολλούς αριθμούς, διότι παράγονται μεγάλα και ενεργοβόρα κυκλώματα. Στην παρούσα εργασία μελετάται η μέθοδος υπολοίπου (RNS), η οποία χρησιμοποιεί συστήματα αριθμών μεγαλύτερα από το δυαδικό. Ορίζεται μια βάση τριών αριθμών και οι αριθμοί αναπαρίστανται στα εκάστοτε τρία συστήματα της βάσης. Η άθροιση γίνεται παράλληλα σε κάθε σύστημα και τέλος οι αριθμοί μετατρέπονται πάλι στο δυαδικό. Τα πλεονεκτήματα αυτής της προσέγγισης είναι η παραλληλία και η απουσία μεγάλων κυκλωμάτων διάδοσης κρατουμένου. Το μειονέκτημα είναι ότι χρειάζονται κυκλώματα μετατροπής από και προς το δυαδικό σύστημα. Αυτού του είδους οι αθροιστές συγκρίνονται για κατανάλωση ενέργειας με τους γνωστούς carry look ahead και carry select. Διαπιστώθηκε ότι οι RNS αθροιστές καταναλώνουν λιγότερη ενέργεια. / The addition of many-bits numbers is a time and power consuming task. Many methods are developed to reduce the sum calculation delay due to carry propagation. Such techniques are Carry Look Ahead and Carry Select, Those techniques are not scalable to many bits numbers or a set of many numbers: the circuits needed are big and power consuming. In this thesis, the the RNS technique is investigated. This technique uses radix bigger than binary. A 3-numbers base is defined and the numbers that participate in the sum are represented uniquely in each element radix. The addition is performed in parallel in each radix. Finally the result is transformed back to the binary numbers system. The advantages of this technique are the parallelization of the process and the lack of carry propagation circuits. The disadvantage is that transformation circuits are need from/to binary system. The RNS adders are compared to CLA and CS for power. Such adders are compared to CLA and CS for power consumption. It is found that RNS adders consume less energy.
|
20 |
Μέθοδοι βελτίωσης της χωρικής ανάλυσης ψηφιακής εικόναςΠαναγιωτοπούλου, Αντιγόνη 12 April 2010 (has links)
Η αντιμετώπιση της περιορισμένης χωρικής ανάλυσης των εικόνων, η οποία οφείλεται στους φυσικούς περιορισμούς που εμφανίζουν οι αισθητήρες σύλληψης εικόνας, αποτελεί το αντικείμενο μελέτης της παρούσας διδακτορικής διατριβής. Στη διατριβή αυτή αρχικά γίνεται προσπάθεια μοντελοποίησης της λειτουργίας του ψηφιοποιητή εικόνας κατά τη δημιουργία αντίγραφου ενός εγγράφου μέσω απλών μοντέλων. Στην εξομοίωση της λειτουργίας του ψηφιοποιητή, το προτεινόμενο μοντέλο θα πρέπει να προτιμηθεί έναντι των μοντέλων Gaussian και Cauchy, που συναντώνται στη βιβλιογραφία, καθώς είναι ισοδύναμο στην απόδοση, απλούστερο στην υλοποίηση και δεν παρουσιάζει εξάρτηση από συγκεκριμένα χαρακτηριστικά λειτουργίας του ψηφιοποιητή.
Έπειτα, μορφοποιούνται νέες μέθοδοι για τη βελτίωση της χωρικής ανάλυσης σε εικόνες. Προτείνεται μέθοδος μη ομοιόμορφης παρεμβολής για ανακατασκευή εικόνας Super-Resolution (SR). Αποδεικνύεται πειραματικά πως η προτεινόμενη μέθοδος η οποία χρησιμοποιεί την παρεμβολή Kriging υπερτερεί της μεθόδου η οποία δημιουργεί το πλέγμα υψηλής ανάλυσης μέσω της σταθμισμένης παρεμβολής κοντινότερου γείτονα που αποτελεί συμβατική τεχνική. Επίσης, παρουσιάζονται τρεις νέες μέθοδοι για στοχαστική ανακατασκευή εικόνας SR regularized. Ο εκτιμητής Tukey σε συνδυασμό με το Bilateral Total Variation (BTV) regularization, ο εκτιμητής Lorentzian σε συνδυασμό με το BTV regularization και ο εκτιμητής Huber συνδυασμένος με το BTV regularization είναι οι τρεις μέθοδοι που προτείνονται. Μία πρόσθετη καινοτομία αποτελεί η απευθείας σύγκριση των τριών εκτιμητών Tukey, Lorentzian και Huber στην ανακατασκευή εικόνας super-resolution, άρα στην απόρριψη outliers. Η απόδοση των προτεινόμενων μεθόδων συγκρίνεται απευθείας με εκείνη μίας τεχνικής SR regularized που υπάρχει στη βιβλιογραφία, η οποία αποδεικνύεται κατώτερη. Σημειώνεται πως τα πειραματικά αποτελέσματα οδηγούν σε επαλήθευση της θεωρίας εύρωστης στατιστικής συμπεριφοράς.
Επίσης, εκπονείται μία πρωτότυπη μελέτη σχετικά με την επίδραση που έχει κάθε ένας από τους όρους έκφρασης πιστότητας στα δεδομένα και regularization στη διαμόρφωση του αποτελέσματος της ανακατασκευής εικόνας SR. Τα συμπεράσματα που προκύπτουν βοηθούν στην επιλογή μίας αποτελεσματικής μεθόδου για ανακατασκευή εικόνας SR ανάμεσα σε διάφορες υποψήφιες μεθόδους για κάποια δεδομένη ακολουθία εικόνων χαμηλής ανάλυσης. Τέλος, προτείνεται μία μέθοδος παρεμβολής σε εικόνα μέσω νευρωνικού δικτύου. Χάρη στην προτεινόμενη τεχνική εκπαίδευσης το νευρωνικό δίκτυο μαθαίνει το point spread function του ψηφιοποιητή εικόνας. Τα πειραματικά αποτελέσματα αποδεικνύουν πως η προτεινόμενη μέθοδος υπερτερεί σε σχέση με τους κλασικούς αλγόριθμους δικυβικής παρεμβολής και παρεμβολής spline. Η τεχνική που προτείνεται εξετάζει για πρώτη φορά το ζήτημα της σειράς της παρουσίασης των δεδομένων εκπαίδευσης στην είσοδο του νευρωνικού δικτύου. / Coping with the limited spatial resolution of images, which is caused by the physical limitations of image sensors, is the objective of this thesis. Initially, an effort to model the scanner function when generating a document copy by means of simple models is made. In a task of scanner function simulation the proposed model should be preferred over the Gaussian and Cauchy models met in bibliography as it is equivalent in performance, simpler in implementation and does not present any dependence on certain scanner characteristics.
Afterwards, new methods for improving images spatial resolution are formulated. A nonuniform interpolation method for Super-Resolution (SR) image reconstruction is proposed. Experimentation proves that the proposed method employing Kriging interpolation predominates over the method which creates the high-resolution grid by means of the weighted nearest neighbor interpolation that is a conventional interpolation technique. Also, three new methods for stochastic regularized SR image reconstruction are presented. The Tukey error norm in combination with the Bilateral Total Variation (BTV) regularization, the Lorentzian error norm in combination with the BTV regularization and the Huber error norm combined with the BTV regularization are the three proposed methods. An additional novelty is the direct comparison of the three estimators Tukey, Lorentzian and Huber in the task of super-resolution image reconstruction, thus in rejecting outliers. The performance of the proposed methods proves superior to that of a regularized SR technique met in bibliography. Experimental results verify the robust statistics theory.
Moreover, a novel study which considers the effect of each one of the data-fidelity and regularization terms on the SR image reconstruction result is carried out. The conclusions reached help to select an effective SR image reconstruction method, among several potential ones, for a given low-resolution sequence of frames. Finally, an image interpolation method employing a neural network is proposed. The presented training procedure results in the network learning the scanner point spread function. Experimental results prove that the proposed technique predominates over the classical algorithms of bicubic and spline interpolation. The proposed method is novel as it treats, for the first time, the issue of the training data presentation order to the neural network input.
|
Page generated in 0.0384 seconds