• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 28
  • 23
  • 16
  • 14
  • 13
  • 12
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The eukaryotic translation initiation factor 2, a hero turned villain in β cells

Abdulkarim, Baroj 06 June 2017 (has links)
The prevalence of type 2 diabetes is increasing dramatically worldwide. Type 2 diabetes is a major health and socio-economic burden. Genetic predisposition and the obesity epidemic, due to sedentary life style and high caloric food intake, are associated with development of type 2 diabetes. Circulating free fatty acids (FFAs), in particular saturated FFAs, are linked with insulin resistance and β cell dysfunction. Following this background we performed RNA sequencing of human pancreatic islets treated with the saturated FFA palmitate to acquire a global image of the islet response to this insult. We identified several stress pathways induced by palmitate with a major induction of the endoplasmic reticulum (ER) stress response. The ER stress response, in particular the PKR-like ER kinase (PERK) branch, has been shown to be induced by saturated FFA. It leads to increased β cell apoptosis both in fluorescence activated cell sorter (FACS) purified rat β cells and human islets. We further clarified the role of this pathway by studying the involvement of the constitutive repressor of eIF2α phosphorylation (CReP) in a monogenic form of diabetes. CReP is a repressor of eukaryotic translation initiation factor 2α (eIF2α) phosphorylation. A direct target of PERK, eIF2α is involved in translational attenuation and induction of apoptosis. We have shown that CReP loss-of-function leads to a new syndrome of young onset diabetes, intellectual disability and microcephaly. The identified R658C mutation abrogated CReP activity leading to increased eIF2α phosphorylation and β cell apoptosis. To further demonstrate the importance of eIF2α dysregulation in β cell demise, we used guanabenz, a chemical inhibitor of growth arrest DNA damage inducible 34 (GADD34). GADD34 is an ER stress-induced repressor of eIF2α phosphorylation. Guanabenz potentiated FFA-mediated ER stress and apoptosis in clonal and primary rat β cells and in human islets through the activation of CCAAT/enhancer binding protein homologous protein (CHOP), downstream of eIF2α. Guanabenz administration in mice impaired glucose tolerance and led to β cell dysfunction. In ex vivo experiments guanabenz also induced β cell dysfunction in mouse and rat islets.In conclusion our data demonstrate that the dysregulation of signaling in the PERK/eIF2α pathway is crucial for β cell demise. Together with previously reported monogenic diabetes caused by loss-of-function mutations in PERK in man and the eIF2αS51A mutation in mice, our findings suggest that a narrow regulation of PERK/eIF2α signaling is central for proper β cell function and survival. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
22

Non-invasive evaluation of GPR119 agonist effects on β-cell mass in diabetic male mice using ¹¹¹In-exendin-4 SPECT/CT / ¹¹¹インジウム標識exendin-4 SPECT/CTを用いた、糖尿病モデル雄マウスでのGPR119アゴニストによる膵β細胞保護効果の非侵襲的評価

Murakami, Takaaki 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22358号 / 医博第4599号 / 新制||医||1042(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 岩田 想, 教授 富樫 かおり / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
23

Analysis of FOXO1A as a Candidate Gene for Type 2 Diabetes

Karim, Mohammad, Craig, Rebekah L., Wang, Xiaoqin, Hale, Terri C., Elbein, Steven C. 01 June 2006 (has links)
The human forkhead box O1A (FOXO1A) gene on chromosome 13q14.1 is a key transcription factor in insulin signaling in liver and adipose tissue and plays a central role in the regulation of key pancreatic β-cell genes including IPF1. We hypothesized that sequence variants of FOXO1A contribute to the observed defects in hepatic and peripheral insulin action and altered β-cell compensation that characterize type 2 diabetes (T2DM). To test this hypothesis, we screened the three exons, 3′ untranslated region, and 5′ flanking region for sequence variants in Caucasian and African-American individuals with early onset (<45 years) T2DM. We identified only six variants; none altered the coding sequence, and except for one variant in the 3′ untranslated region, they were rare or absent in Caucasians. To increase coverage of the gene, we selected seven additional variants in the large first intron and 5′ flanking region, thus providing 13 variants that spanned 116.4 kb. Based on frequency and linkage disequilibrium patterns in a subset of individuals, we selected eight SNPs to type in a Caucasian population comprising 192 unrelated nondiabetic control individuals and 192 individuals with T2DM, and 10 SNPs to type in 182 controls and 352 diabetic individuals of African-American ancestry. No variant was associated with T2DM (African-Americans, p > 0.08; Caucasians, p > 0.09). Of the 8 Caucasian SNPs, six comprised a single haplotype block spanning over 100 kb and including most of the large first intron. In contrast, no block was observed among SNPs typed in African-Americans. No haplotype was associated with T2DM. FOXO1A variation is rare and is unlikely to contribute to T2DM in either Caucasian or African-American populations.
24

Mechanism of genistein in the regulation of pancreatic beta-cell proliferation

Zhang, Wen 07 December 2007 (has links)
This study was designed to examine the effect of genistein, a botanical derived primarily from legumes, on pancreatic β-cell proliferation and the related molecular mechanisms. Diabetes mellitus is a major and growing public health problem worldwide. Both in type 1 (T1D) and type 2 diabetes (T2D), the deterioration of glycemic control over time is primarily caused by an inadequate mass and progressive dysfunction of β-cells. Therefore, the search for novel, safe and cost-effective agents that can enhance islet β-cell proliferation, thereby preserving β-cell mass, could be one of the essential strategies to prevent diabetes, given that β-cells have the potential to regenerate by proliferation of pre-existing b-cells in both physiological condition and after onset of diabetes. Genistein has various biological actions. However, studies on whether genistein has an effect on pancreatic β-cell function are very limited. Our laboratory recently found that genistein activates cAMP/protein kinase A (PKA) signaling in both clonal β-cells and mouse islets. Here I present evidence that genistein induced cellular proliferation of clonal rat pancreatic β-cells (INS1) and human islets following 24 h of incubation. This effect was dose-dependent with 5 µM genistein inducing a maximal 41% increase. The effect of genistein on cell proliferation was not dependent on estrogen receptors because this effect was not blocked by the estrogen receptor inhibitor ICI182,780. In addition, the genistein effect on β-cell proliferation was not shared by 17-β-estradiol or a host of structurally related flavonoid compounds, suggesting that this genistein action is structure-specific. Pharmacological or molecular intervention of PKA or MEK1/2, the upstream kinase of p42/44 mitogen activated protein kinases (ERK1/2), completely abolished the genistein-stimulated proliferation of INS1 cells and human islets, suggesting that both molecules are essential for genistein action. Consistent with its effect on cell proliferation, genistein increased intracellular cAMP and subsequently activated PKA in human islets. Genistein also caused a rapid and sustained phosphorylation of ERK1/2 with a maximal increase of 185% at 5 µM genistein. The genistein-induced ERK1/2 activation was completely ablated by inhibition of PKA in INS1 cells and human islets. Furthermore, I found that genistein induced protein expression of cyclin D1, a nuclear target of PKA and ERK1/2 activation and a major cell-cycle regulator essential for ï ¢-cell growth. These findings demonstrated that genistein may be a plant-derived growth factor for pancreatic β-cells involving induction of cyclin D1 via activation of the cAMP/PKA-dependent ERK1/2 signaling pathway, thereby providing a novel role for genistein in the regulation of pancreatic β-cell function. / Master of Science
25

Diabetes in 3D : β-cell mass assessments in disease models &amp; evaluation of SPECT based imaging

Parween, Saba January 1900 (has links)
Diabetes is a rapidly growing disease with 415 million affected adults worldwide. The pancreatic endocrine cells, most importantly the insulin producing β-cells, play an important role in regulating blood glucose homeostasis. Type 1 diabetes (T1D) is characterized by the inability of the pancreas to secrete sufficient amounts of insulin due to autoimmune destruction of insulin producing β-cells. Type 2 diabetes (T2D) on the other hand is characterized by defects in insulin secretion and insulin sensitivity. Alterations in the β-cell mass (BCM) and/or function play a major role in the development and progression of the disease. Understanding BCM dynamics in disease models is therefore a key aspect for better interpretation of research results. In this thesis, we have used optical projection tomography (OPT) as a tool to evaluate a non-invasive imaging modality for β-cell scoring and to study disease dynamics in frequently used animal models for T1D and T2D. The possibility to monitor BCM in vivo would radically improve our competence in studying the pathogenesis of diabetes and in therapeutic interventions. Single photon emission computed tomography (SPECT) is a widely used technique that has become a promising approach to monitor changes in BCM in vivo. A key issue for using this approach is to evaluate the β-cell specificity and read out of the utilized radiotracers. This is most commonly performed by conventional stereological approaches, which rely on the extrapolation of 2D data. We developed a protocol for SPECT-OPT multimodal imaging that enables rapid and accurate cross evaluation of SPECT based assessments of BCM. While histological determination of islet spatial distribution was challenging, SPECT and OPT revealed similar distribution patterns of the radiotracer 111In-exendin-3 and insulin positive β-cell volumes respectively between different pancreatic lobes, both visually and quantitatively. We propose SPECT-OPT multimodal imaging as an accurate and better approach for validating the performance of β-cell radiotracers. The leptin deficient ob/ob mouse is a widely used model for studies of metabolic disturbances leading to T2D, including obesity and insulin resistance. By OPT imaging we created the first 3D-spatial and quantitative account of BCM distribution in this model. We observed a previously unreported degree of cystic lesions in hypertrophic islets, that were occupied by red blood cells (RBCs) and/or fibrin mesh. We propose that these lesions are formed by a mechanism involving the extravasation of RBCs/plasma due to increased blood flow and islet vessel instability. Further, our data indicate that the primary lobular compartments of the ob/ob pancreas have different potentials for expanding their β-cell population. Unawareness of these characteristics of β-cell expansion in ob/ob mice presented in this study may significantly influence ex vivo and in vivo assessments of this model in studies of β-cell adaptation and function. The tomographic data, on which this study was based, will be made publically available as a resource to the research community for the planning and interpretation of research involving this model. There are limited studies on early metabolic and functional changes of BCM in the settings of T1D. In order to assess initial metabolic alterations in BCM before the onset of diabetes, we characterized congenic diabetes prone Bio-breeding (BB) DR.lyp/lyp rats, a widely used model for T1D diabetes. We observed lower acute insulin response, reduced islet blood flow and a significant reduction in the BCM of small and medium sized islets at a very early stage (40 days), i.e. before insulitis and development of diabetes. Underlying changes in islet function may be a previously unrecognized factor of importance in the development of T1D.
26

Etude in vivo et in vitro du vieillissement des îlots pancréatiques : impact de la sénescence endothéliale et des microparticules sur la fonction des îlots / In vivo and in vitro study of pancreatic islets aging : impact of endothelial senescence and microparticles on islet function

Kassem, Mohamad 20 January 2017 (has links)
Ce travail scientifique a abordé la problématique du vieillissement des îlots pancréatiques et l’effet de la senescence endothéliale et des microparticules (MPs) sur la fonction des îlots. Nous avons exploré l’impact du vieillissement du pancréas sur la morphologie, le devenir et la fonction de l’îlot pancréatique par analyse comparative entre pancréas de rats jeunes et d’âge moyen et le rôle des MPs endothéliales pro-sénescentes sur la fonction des îlots et leur sénescence prématurée. Nos résultats in vivo montrent que le pancréas est un organe précocement sensible au stress oxydant s’accumulant avec l’âge. Il conduit à la surexpression des marqueurs procoagulants et de senescence sans apparition d’apoptose. In vitro, les MPs de cellules endothéliales sénescentes ont un effet pro-sénescent sur les îlots pancréatiques isolés de rats jeunes avec une activité SA-β-galactosidase caractéristique, la surexpression des marqueurs p53, p21 et p16 et la réduction de la capacité de la sécrétion d’insuline en réponse au glucose. L’ensemble de nos résultats in vivo et in vitro désigne la contribution de la sénescence endothéliale comme une cause probable à la dysfonction de greffon. / This scientific work has tackled the question of the pancreatic islets aging and the effect of endothelial senescence and microparticles (MPs) on islet function. We investigated the impact of aging on pancreas morphology, fate and on the function of the pancreatic islet by comparative analysis between pancreas in young and middle-aged rats, as well as the role of pro-senescent endothelial MPs on islet function and their premature senescence. Our in vivo data show that the pancreas is an early sensitive organ to oxidative stress accumulating with age and leading to overexpression of the procoagulant and senescence markers without appearance of apoptosis. In vitro, MPs of senescent endothelial cells have a pro-senescent effect on pancreatic islets isolated from young rats with characteristic SA-β-galactosidase activity, overexpression of p53, p21 and p16 markers and reducing the ability of insulin secretion in response to glucose. Altogether, our in vivo and in vitro data indicate the contribution of endothelial senescence as a possible contributor to graft dysfunction.
27

Diabetes in Young Adults : Remission, β-cell function and markers of inflammation

Schölin, Anna January 2003 (has links)
<p>Type 1 diabetes is caused by immuno-mediated β-cell destruction leading to insulin deficiency and hyperglycaemia. The decline in β-cell function and the clinical course after diagnosis vary. Whether the process of destruction of the β-cells is associated with markers of a non-specific inflammatory response is unknown. The aims of these studies were to identify factors of importance for clinical remission (low insulin need and normoglycaemia) and long-term β-cell function and estimate the degree of non-inflammatory response in type 1 diabetes in young adults. Clinical remission and β-cell function eight years after diagnosis were assessed and related to clinical, biochemical and immunological variables at diagnosis, including islet autoantibodies [ICA, GADA, IA-2A]. Markers of low-grade inflammation in plasma [CRP and IL-6] were estimated and the concentrations were related β-cell function [plasma C-peptide], glycaemic control and autoimmunity at diagnosis and the first year thereafter. The results showed that clinical remission occurred in about half of the patients with newly diagnosed type 1 diabetes. Preserved β-cell function eight years after diagnosis was observed in 16% of the patients classified at diagnosis as having autoimmune type 1 diabetes. Duration of remission was dependent on BMI, degree of metabolic derangement and presence of GADA at diagnosis. BMI at diagnosis was also of importance for preserved β-cell function after eight years of the disease, as were the amount of islet antibodies and presence of ICA. Elevated CRP levels were noted in the majority of cases at diagnosis and both CRP and IL-6 concentrations were stable the first year after clinical diagnosis. High concentrations of CRP and IL-6 did not relate to β-cell destruction or the degree of autoimmunity. CRP concentrations were higher in islet antibody negative than in positive patients. CRP also correlated positively to BMI, C-peptide at 12 months and to increasing HbA1c between six and 12 months. In general, females had shorter remissions, lower concentrations of serum bicarbonate and higher levels and prevalence of GADA at diagnosis, compared to males. Females also had higher HbA1c and CRP values the first year after diagnosis. In summary, BMI at diagnosis is a strong predictor of duration of remission and preservation of β-cell function. Elevated CRP concentrations are correlated to factors linked rather to insulin resistance than to β-cell destruction. Females appear to have a more acute onset and a more severe course of the disease than males.</p>
28

<i>In vitro</i> Studies of β-cell Death and Survival. Modulation by Adenoviral Vectors and Bcl-2 Overexpression

Barbu, Andreea Roxana January 2004 (has links)
<p>Type 1 diabetes is a multifactorial disease resulting from the selective destruction of insulin-producing β-cells within the pancreatic islets of Langerhans. The mechanisms of β-cell death are not fully understood but cytokines are important mediators of this process. In the present study we found that the combination of IL-1β, TNF-α and IFN-γ induced a nitric oxide-dependent disruption of the mitochondrial membrane potential in rat insulin-producing RINm5F-cells, which seems to be a necessary event for both RINm5F-cell apoptosis and necrosis. The antiapoptotic protein Bcl-2 was able to prevent cellular death in RINm5F cells, most probably by counteracting the mitochondrial permeability transition. These results pointed out the potential of such antiapoptotic genes as gene therapy tools, to allow enhanced resistance against autoimmune destruction of β-cells in type 1 diabetes. For this purpose we used a progesterone-antagonist (RU 486)-inducible gene transfer system to achieve an efficient and controlled Bcl-2 overexpression in primary rat β-cells. However, in our experience, prolonged <i>in vitro</i> culture revealed adenoviral-induced islet cell necrosis, a process that was not prevented by Bcl-2 overexpression. Moreover, we observed that specific adenoviral genotypes correlate with differential induction of necrosis in both human and rat pancreatic islet cells. Although human islet cells showed an increased resistance in terms of viral concentrations required for the induction of cell-toxicity, our results showed that they were unable to build up an efficient antiviral response following infection and that their survival was dependent on the exogenous addition of α-interferon.</p><p>In conclusion, adenoviral techniques for overexpression of antiapoptotic proteins in insulin-producing cells may provide useful tools against β-cell directed autoimmune destruction. However, understanding the specific interactions of the viral gene products with cellular proteins and how they are involved in β-cell death regulation is fundamental for an efficient and safe application of gene therapy approaches to type 1 diabetes.</p>
29

Diabetes in Young Adults : Remission, β-cell function and markers of inflammation

Schölin, Anna January 2003 (has links)
Type 1 diabetes is caused by immuno-mediated β-cell destruction leading to insulin deficiency and hyperglycaemia. The decline in β-cell function and the clinical course after diagnosis vary. Whether the process of destruction of the β-cells is associated with markers of a non-specific inflammatory response is unknown. The aims of these studies were to identify factors of importance for clinical remission (low insulin need and normoglycaemia) and long-term β-cell function and estimate the degree of non-inflammatory response in type 1 diabetes in young adults. Clinical remission and β-cell function eight years after diagnosis were assessed and related to clinical, biochemical and immunological variables at diagnosis, including islet autoantibodies [ICA, GADA, IA-2A]. Markers of low-grade inflammation in plasma [CRP and IL-6] were estimated and the concentrations were related β-cell function [plasma C-peptide], glycaemic control and autoimmunity at diagnosis and the first year thereafter. The results showed that clinical remission occurred in about half of the patients with newly diagnosed type 1 diabetes. Preserved β-cell function eight years after diagnosis was observed in 16% of the patients classified at diagnosis as having autoimmune type 1 diabetes. Duration of remission was dependent on BMI, degree of metabolic derangement and presence of GADA at diagnosis. BMI at diagnosis was also of importance for preserved β-cell function after eight years of the disease, as were the amount of islet antibodies and presence of ICA. Elevated CRP levels were noted in the majority of cases at diagnosis and both CRP and IL-6 concentrations were stable the first year after clinical diagnosis. High concentrations of CRP and IL-6 did not relate to β-cell destruction or the degree of autoimmunity. CRP concentrations were higher in islet antibody negative than in positive patients. CRP also correlated positively to BMI, C-peptide at 12 months and to increasing HbA1c between six and 12 months. In general, females had shorter remissions, lower concentrations of serum bicarbonate and higher levels and prevalence of GADA at diagnosis, compared to males. Females also had higher HbA1c and CRP values the first year after diagnosis. In summary, BMI at diagnosis is a strong predictor of duration of remission and preservation of β-cell function. Elevated CRP concentrations are correlated to factors linked rather to insulin resistance than to β-cell destruction. Females appear to have a more acute onset and a more severe course of the disease than males.
30

In vitro Studies of β-cell Death and Survival. Modulation by Adenoviral Vectors and Bcl-2 Overexpression

Barbu, Andreea Roxana January 2004 (has links)
Type 1 diabetes is a multifactorial disease resulting from the selective destruction of insulin-producing β-cells within the pancreatic islets of Langerhans. The mechanisms of β-cell death are not fully understood but cytokines are important mediators of this process. In the present study we found that the combination of IL-1β, TNF-α and IFN-γ induced a nitric oxide-dependent disruption of the mitochondrial membrane potential in rat insulin-producing RINm5F-cells, which seems to be a necessary event for both RINm5F-cell apoptosis and necrosis. The antiapoptotic protein Bcl-2 was able to prevent cellular death in RINm5F cells, most probably by counteracting the mitochondrial permeability transition. These results pointed out the potential of such antiapoptotic genes as gene therapy tools, to allow enhanced resistance against autoimmune destruction of β-cells in type 1 diabetes. For this purpose we used a progesterone-antagonist (RU 486)-inducible gene transfer system to achieve an efficient and controlled Bcl-2 overexpression in primary rat β-cells. However, in our experience, prolonged in vitro culture revealed adenoviral-induced islet cell necrosis, a process that was not prevented by Bcl-2 overexpression. Moreover, we observed that specific adenoviral genotypes correlate with differential induction of necrosis in both human and rat pancreatic islet cells. Although human islet cells showed an increased resistance in terms of viral concentrations required for the induction of cell-toxicity, our results showed that they were unable to build up an efficient antiviral response following infection and that their survival was dependent on the exogenous addition of α-interferon. In conclusion, adenoviral techniques for overexpression of antiapoptotic proteins in insulin-producing cells may provide useful tools against β-cell directed autoimmune destruction. However, understanding the specific interactions of the viral gene products with cellular proteins and how they are involved in β-cell death regulation is fundamental for an efficient and safe application of gene therapy approaches to type 1 diabetes.

Page generated in 0.0481 seconds