251 |
Estimation de distribution de tailles de particules par techniques d'inférence bayésienne / Particle size distribution esimation using Bayesian inference techniquesBoualem, Abdelbassit 06 December 2016 (has links)
Ce travail de recherche traite le problème inverse d’estimation de la distribution de tailles de particules (DTP) à partir des données de la diffusion dynamique de lumière (DLS). Les méthodes actuelles d’estimation souffrent de la mauvaise répétabilité des résultats d’estimation et de la faible capacité à séparer les composantes d’un échantillon multimodal de particules. L’objectif de cette thèse est de développer de nouvelles méthodes plus performantes basées sur les techniques d’inférence bayésienne et cela en exploitant la diversité angulaire des données de la DLS. Nous avons proposé tout d’abord une méthode non paramétrique utilisant un modèle « free-form » mais qui nécessite une connaissance a priori du support de la DTP. Pour éviter ce problème, nous avons ensuite proposé une méthode paramétrique fondée sur la modélisation de la DTP en utilisant un modèle de mélange de distributions gaussiennes. Les deux méthodes bayésiennes proposées utilisent des algorithmes de simulation de Monte-Carlo par chaînes de Markov. Les résultats d’analyse de données simulées et réelles montrent la capacité des méthodes proposées à estimer des DTPs multimodales avec une haute résolution et une très bonne répétabilité. Nous avons aussi calculé les bornes de Cramér-Rao du modèle de mélange de distributions gaussiennes. Les résultats montrent qu’il existe des valeurs d’angles privilégiées garantissant des erreurs minimales sur l’estimation de la DTP. / This research work treats the inverse problem of particle size distribution (PSD) estimation from dynamic light scattering (DLS) data. The current DLS data analysis methods have bad estimation results repeatability and poor ability to separate the components (resolution) of a multimodal sample of particles. This thesis aims to develop new and more efficient estimation methods based on Bayesian inference techniques by taking advantage of the angular diversity of the DLS data. First, we proposed a non-parametric method based on a free-form model with the disadvantage of requiring a priori knowledge of the PSD support. To avoid this problem, we then proposed a parametric method based on modelling the PSD using a Gaussian mixture model. The two proposed Bayesian methods use Markov chain Monte Carlo simulation algorithms. The obtained results, on simulated and real DLS data, show the capability of the proposed methods to estimate multimodal PSDs with high resolution and better repeatability. We also computed the Cramér-Rao bounds of the Gaussian mixture model. The results show that there are preferred angle values ensuring minimum error on the PSD estimation.
|
252 |
Modélisation et traitement statistique d'images de microscopie confocale : application en dermatologie / Modeling and statistical treatment of confocal microscopy images : application in dermatologyHalimi, Abdelghafour 04 December 2017 (has links)
Dans cette thèse, nous développons des modèles et des méthodes statistiques pour le traitement d’images de microscopie confocale de la peau dans le but de détecter une maladie de la peau appelée lentigo. Une première contribution consiste à proposer un modèle statistique paramétrique pour représenter la texture dans le domaine des ondelettes. Plus précisément, il s’agit d’une distribution gaussienne généralisée dont on montre que le paramètre d’échelle est caractéristique des tissus sousjacents. La modélisation des données dans le domaine de l’image est un autre sujet traité dans cette thèse. A cette fin, une distribution gamma généralisée est proposée. Notre deuxième contribution consiste alors à développer un estimateur efficace des paramètres de cette loi à l’aide d’une descente de gradient naturel. Finalement, un modèle d’observation de bruit multiplicatif est établi pour expliquer la distribution gamma généralisée des données. Des méthodes d’inférence bayésienne paramétrique sont ensuite développées avec ce modèle pour permettre la classification d’images saines et présentant un lentigo. Les algorithmes développés sont appliqués à des images réelles obtenues d’une étude clinique dermatologique. / In this work, we develop statistical models and processing methods for confocal microscopy images. The first contribution consists of a parametric statistical model to represent textures in the wavelet domain. Precisely, a generalized Gaussian distribution is proposed, whose scale parameter is shown to be discriminant of the underlying tissues. The thesis deals also with modeling data in the image domain using the generalized gamma distribution. The second contribution develops an efficient parameter estimator for this distribution based on a natural gradient approach. The third contribution establishes a multiplicative noise observation model to explain the distribution of the data. Parametric Bayesian inference methods are subsequently developed based on this model to classify healthy and lentigo images. All algorithms developed in this thesis have been applied to real images from a dermatologic clinical study.
|
253 |
Aplicações em meta-análise sob um enfoque bayesiano usando dados médicos.Pissini, Carla Fernanda 21 March 2006 (has links)
Made available in DSpace on 2016-06-02T20:06:11Z (GMT). No. of bitstreams: 1
DissCFP.pdf: 956101 bytes, checksum: e21a11e1dc4754a5751b0b0840943082 (MD5)
Previous issue date: 2006-03-21 / Financiadora de Estudos e Projetos / In this work, we consider the use of Meta-analysis with a Bayesian approach. Meta-analysis is a statistical technique that combines the results of di¤erent independent studies with purpose to find general conclusions. This term was introduced by Glass (1976) and it has been used when the number of studies about some research project is small. Usually, the models for Meta-analysis assume a large number of parameters and the Bayesian approach using MCMC (Markov Chain Monte Carlo) methods is a good alternative to combine information of independent studies, to obtain accutrate inferences about a specified treatment. As illustration, we consider real medical data sets on di¤erent studies, in which, we consider fixed and random e¤ects models. We also assume mixture of normal distributions for the error of the models. Another application is considered with
educational data. / Neste trabalho, consideramos o uso de Meta-análise sob um enfoque Bayesiano. Meta-análise é uma técnica estatística que combina resultados de diversos estudos in-dependentes, com o propósito de descrever conclusões gerais. Este termo foi introduzido por Glass (1976) usado quando o número de estudos sobre alguma pesquisa científica é pequeno. Os modelos propostos para Meta-análise usualmente assumem muitos parâmetros e o enfoque Bayesiano com MCMC (Monte Carlo em Cadeias de Markov) é uma alternativa apropriada para combinar informações de estudos independentes. O uso de modelos Bayesianos hierárquicos permite combinações de vários estudos independentes, para a obtenção de inferências precisas sobre um determinado tratamento. Como ilustração numérica consideramos conjuntos de dados médicos de diferentes estudos e, na análise, utilizamos modelos de efeitos fixos e aleatórios e mistura de distribuições normais para o erro do modelo de regressão. Em uma outra aplicação relacionamos Meta-análise e Educação, através do efeito da espectativa do professor associada ao QI dos estudantes.
|
254 |
Estudo da quantificação de incertezas para o problema de contaminação de meios porosos heterogêneos / Study the uncertainty quantification to the problem of contamination of heterogeneous porous mediaThiago Jordem Pereira 10 October 2012 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As técnicas de injeção de traçadores têm sido amplamente utilizadas na investigação
de escoamentos em meios porosos, principalmente em problemas envolvendo
a simulação numérica de escoamentos miscíveis em reservatórios de petróleo e
o transporte de contaminantes em aquíferos. Reservatórios subterrâneos são em geral
heterogêneos e podem apresentar variações significativas das suas propriedades em
várias escalas de comprimento. Estas variações espaciais são incorporadas às equações
que governam o escoamento no interior do meio poroso por meio de campos aleatórios.
Estes campos podem prover uma descrição das heterogeneidades da formação
subterrânea nos casos onde o conhecimento geológico não fornece o detalhamento necessário
para a predição determinística do escoamento através do meio poroso. Nesta
tese é empregado um modelo lognormal para o campo de permeabilidades a fim de
reproduzir-se a distribuição de permeabilidades do meio real, e a geração numérica
destes campos aleatórios é feita pelo método da Soma Sucessiva de Campos Gaussianos
Independentes (SSCGI). O objetivo principal deste trabalho é o estudo da quantificação
de incertezas para o problema inverso do transporte de um traçador em um meio poroso
heterogêneo empregando uma abordagem Bayesiana para a atualização dos campos de
permeabilidades, baseada na medição dos valores da concentração espacial do traçador
em tempos específicos. Um método do tipo Markov Chain Monte Carlo a dois estágios
é utilizado na amostragem da distribuição de probabilidade a posteriori e a cadeia de
Markov é construída a partir da reconstrução aleatória dos campos de permeabilidades.
Na resolução do problema de pressão-velocidade que governa o escoamento empregase
um método do tipo Elementos Finitos Mistos adequado para o cálculo acurado dos
fluxos em campos de permeabilidades heterogêneos e uma abordagem Lagrangiana, o
método Forward Integral Tracking (FIT), é utilizada na simulação numérica do problema
do transporte do traçador. Resultados numéricos são obtidos e apresentados para um
conjunto de realizações amostrais dos campos de permeabilidades. / Tracer injection techniques have been widely used to investigate flows in heterogeneous
porous media, especially in problems related to numerical simulation of
miscible flows in oil reservoirs and to contaminant transport in aquifers. Oil reservoirs
are generally heterogeneous and may possess spatially significant variations in their
properties on several length scales. These spatial variations are incorporated into the
governing equations for flow problems in porous media on the basis of random fields.
Random fields provide a natural description of rock heterogeneities in the typical case
in which the geological knowledge of rock is much less detailed than is necessary to
predict flow properties through it deterministically. In this thesis we adopt a scalar
log-normal permeability field k(x) to reproduce the statistical distribution of the permeability
values of a real medium, and the numerical generation of these random fields
is based on a Successive Sum of Independent Gaussian Fields defined on multiple
length scales. The aim of this work is to study the uncertainty quantification in inverse
problems for tracer transport in heterogeneous porous media in a Bayesian framework
and propose the permeability update based on observed measurements of spatially
sparse tracer concentration at certain times. A two-stage Markov chain Monte Carlo
(MCMC) method is used to sample posterior probability distribution with hierarchical
priors and the Markov chain is constructed from random reconstruction of the permeability
fields. To solve the Darcys law we use a mixed finite elements method which
are suitable to compute accurately the relevant fluxes in heterogeneous permeability
fields and a Lagrangian strategy, the Forward Integral Tracking (FIT) method, for the
numerical simulation of tracer transport problem. Numerical results are presented for
a set of sampled realizations of the permeability fields.
|
255 |
Modelos de regressão para dados censurados sob distribuições simétricas / Regression models for censored data under symmetric distributions.Aldo William Medina Garay 30 April 2014 (has links)
Este trabalho tem como objetivo principal apresentar uma abordagem clássica e Bayesiana dos modelos lineares com observações censuradas, que é uma nova área de pesquisa com grandes possibilidades de aplicações. Aqui, substituimos o uso convencional da distribuição normal para os erros por uma família de distribuições mais flexíveis, o que nos permite lidar de forma mais adequada com observações censuradas na presença de outliers. Esta família é obtida através de um mecanismo de fácil construção e possui como casos especiais as distribuições t de Student, Pearson tipo VII, slash, normal contaminada e, obviamente, a normal. Para o caso de respostas correlacionadas e censuradas propomos um modelo de regressão linear robusto baseado na distribuição t de Student, desenvolvendo um algoritmo tipo EM que depende dos dois primeiros momentos da distribuição t de Student truncada. / This work aims to present a classical and Bayesian approach to linear models with censored observations, which is a new area of research with great potential for applications. Here, we replace the conventional use of the normal distribution for the errors of a more flexible family of distributions, which deal in more appropriately with censored observations in the presence of outliers. This family is obtained through a mechanism easy to construct and has as special cases the distributions Student t, Pearson type VII, slash, contaminated normal, and obviously normal. For the case of correlated and censored responses we propose a model of robust linear regression based on Student\'s t distribution and we developed an EM type algorithm based on the first two moments of the truncated Student\'s t distribution.
|
256 |
Misturas de modelos de regressão linear com erros nas variáveis usando misturas de escala da normal assimétricaMonteiro, Renata Evangelista, 92-99124-4468 12 March 2018 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-29T14:38:33Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
VersaoFinal.pdf: 2882901 bytes, checksum: a35c6d27fe0f9aa61dfe3a96244b3140 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-05-29T14:38:46Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
VersaoFinal.pdf: 2882901 bytes, checksum: a35c6d27fe0f9aa61dfe3a96244b3140 (MD5) / Made available in DSpace on 2018-05-29T14:38:46Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
VersaoFinal.pdf: 2882901 bytes, checksum: a35c6d27fe0f9aa61dfe3a96244b3140 (MD5)
Previous issue date: 2018-03-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The traditional estimation of mixture regression models is based on the assumption
of normality of component errors and thus is sensitive to outliers, heavy-tailed and/or
asymmetric errors. Another drawback is that, in general, the analysis is restricted to
directly observed predictors.
We present a proposal to deal with these issues simultaneously in the context of
mixture regression by extending the classic normal model by assuming that, for each
mixture component, the random errors and the covariates jointly follow a scale mixture of
skew-normal distributions. It is also assumed that the covariates are observed with error.
An MCMC-type algorithm to perform Bayesian inference is developed and, in
order to show the efficacy of the proposed methods, simulated and real data sets are
analyzed. / A estimação tradicional em mistura de modelos de regressão é baseada na suposição
de normalidade para os erros aleatórios, sendo assim, sensível a outliers, caudas
pesadas e erros assimétricos. Outra desvantagem é que, em geral, a análise é restrita a
preditores que são observados diretamente.
Apresentamos uma proposta para lidar com estas questões simultaneamente no
contexto de mistura de regressões estendendo o modelo normal clássico. Assumimos
que, conjuntamente e em cada componente da mistura, os erros aleatórios e as covariáveis
seguem uma mistura de escala da distribuição normal assimétrica. Além disso, é feita a
suposição de que as covariáveis são observadas com erro aditivo.
Um algorítmo do tipo MCMC foi desenvolvido para realizar inferência Bayesiana.
A eficácia do modelo proposto é verificada via análises de dados simulados e reais.
|
257 |
Análise bayesiana em modelos TRI de três parâmetros. / Bayesian analysis for three parameters IRT modelsKatia Antunes Marques 19 May 2008 (has links)
Neste trabalho discutimos a análise bayesiana em modelos TRI (Teoria da Resposta ao Item) de três parâmetros com respostas binárias e ordinais, considerando a ligação probito. Em ambos os casos usamos técnicas baseadas em MCCM (método de Monte Carlo baseado em Cadeias de Markov) para estimação dos parâmetros dos itens. No modelo com respostas binárias, consideramos dois conjuntos de dados resultantes de provas com itens de múltipla-escolha. Para esses dados, foi feito um estudo da sensibilidade à escolha de distribuições a priori, além de uma análise das estimativas a posteriori para os parâmetros dos itens: discriminação, dificuldade e probabilidade de acerto ao acaso. Um terceiro conjunto de dados foi utilizado no estudo do modelo com respostas ordinais. Estes dados são provenientes de uma disciplina básica de estatística, onde a prova contêm itens dissertativos. As respostas foram classificadas nas categorias: certa, errada ou parcialmente certa. Utilizamos o programa WinBugs para a estimação dos parâmetros do modelo binário e a função MCMCordfactanal do programa R para estimar os parâmetros do modelo ordinal. Ambos os softwares são não proprietários e gratuitos (livres). / In this dissertation the bayesian analysis for three parameters IRT (Item Response Theory) models with binaries and ordinals responses, considering the probit model, was discussed. For both cases, binary and ordinal, techniques based on MCCM (Monte Carlo Markov Chain) were used to estimate the items parameters. For binary response model, was considered two data sets from tests with multipla choices items. For these two data sets, a sensibility study of the priori distributions choice was considered, and also, an analyses of a posteriori estimates of the items parameters: discrimination, difficulties and guessing. A third data set is used to ilustrate the ordinal response model. This come from an elementar statistical course, where a test with open items is considered. The responses are classified in the following categories: correct, wrong or partial correct. The WinBugs software was used to estimate the parameters for the binary model and, for the ordinal model was considered the function MCMCordfactanal from R program.
|
258 |
Modelagem espaço-temporal para dados de incidência de doenças em plantas. / Spatiotemporal modelling of plant disease incidence.Renato Ribeiro de Lima 18 March 2005 (has links)
A informação sobre a dinâmica espaço-temporal de doenças de plantas é de importância fundamental em estudos epidemiológicos, podendo ser utilizada para descrever e entender o desenvolvimento das doenças, desenvolver planos de amostragem, planejar experimentos controlados e caracterizar perdas na produção ocasionadas pela doença. O estudo de padrões espaciais de doenças de plantas, que são reflexos do processo de dispersão dos patógenos, é importante em estudos epidemiológicos, como o de doenças dos citros, para se definirem estratégias mais adequadas para o controle das doenças, diminuindo os prejuízos causados. A Citricultura é uma das principais atividades agrícolas do Brasil e representa a principal atividade econômica de mais de 400 municípios do Triângulo Mineiro e do Estado de São Paulo, onde se encontra a maior área de citros do país e a maior região produtora de laranjas do mundo. Na avaliação do padrão espacial, diferentes métodos têm sido utilizados, dentre os quais incluem-se o ajuste de distribuições, como, por exemplo, a distribuição beta-binomial, o estudo da relação variância-média, o cálculo de correlação ao intraclasse, a utilização de técnicas de autocorrelação espacial, métodos de classes de distâncias e o ajuste de modelos estocásticos espaço-temporais. Diante da importância de se estudarem padrões espaciais da incidência de doenças em plantas e da necessidade de se conhecer melhor a epidemiologia da morte súbita dos citros e do cancro cítrico, uma técnica baseada em verossimilhança para o ajuste de modelos estocásticos espaço-temporais foi utilizada na caracterização de padrões espaciais. Modificações na metodologia original, buscando uma diminuição do tempo gasto nas análises, foram propostas nesse estudo. Os resultados mostram que as modificações propostas resultaram em uma diminuição significativa no tempo de análise, sem perda de acurácia na estimação dos parâmetros dos modelos considerados. / The information about the spatial-temporal dynamics is of fundamental importance in epidemiological studies for describing and understanding the development of diseases, for developing efficient sampling plans, for planning controlled experiments, for evaluating the effect of different treatments, and for determining crop losses. The Citriculture is the major economic activity of more than 400 municipalities in Minas Gerais and São Paulo States. This is the largest citrus area in Brazil, and the largest sweet orange production area in the world. Therefore, it is very important to study and to characterize spatial patterns of plant diseases, such as citrus canker and citrus sudden death. In the spatial dynamics study, many different methods have been used to characterize the spatial aggregation. These include the fitting of distributions, such as the beta-binomial distribution, the study of variance-mean relationships, the calculation of intraclass correlation, the use of spatial autocorrelation techniques, distance class methods and, the fitting of continuous time spatiotemporal stochastic models. In this work, an improved technique for fitting models to the spatial incidence data by using MCMC methods is proposed. This improved technique, which is used to investigate the spatial patterns of plant disease incidence, is considerably faster than Gibsons methodology, in terms of computational time, without any loss of accuracy.
|
259 |
Apprentissage statistique pour la personnalisation de modèles cardiaques à partir de données d’imagerie / Statistical learning for image-based personalization of cardiac modelsLe Folgoc, Loïc 27 November 2015 (has links)
Cette thèse porte sur un problème de calibration d'un modèle électromécanique de cœur, personnalisé à partir de données d'imagerie médicale 3D+t ; et sur celui - en amont - de suivi du mouvement cardiaque. A cette fin, nous adoptons une méthodologie fondée sur l'apprentissage statistique. Pour la calibration du modèle mécanique, nous introduisons une méthode efficace mêlant apprentissage automatique et une description statistique originale du mouvement cardiaque utilisant la représentation des courants 3D+t. Notre approche repose sur la construction d'un modèle statistique réduit reliant l'espace des paramètres mécaniques à celui du mouvement cardiaque. L'extraction du mouvement à partir d'images médicales avec quantification d'incertitude apparaît essentielle pour cette calibration, et constitue l'objet de la seconde partie de cette thèse. Plus généralement, nous développons un modèle bayésien parcimonieux pour le problème de recalage d'images médicales. Notre contribution est triple et porte sur un modèle étendu de similarité entre images, sur l'ajustement automatique des paramètres du recalage et sur la quantification de l'incertitude. Nous proposons une technique rapide d'inférence gloutonne, applicable à des données cliniques 4D. Enfin, nous nous intéressons de plus près à la qualité des estimations d'incertitude fournies par le modèle. Nous comparons les prédictions du schéma d'inférence gloutonne avec celles données par une procédure d'inférence fidèle au modèle, que nous développons sur la base de techniques MCMC. Nous approfondissons les propriétés théoriques et empiriques du modèle bayésien parcimonieux et des deux schémas d'inférence / This thesis focuses on the calibration of an electromechanical model of the heart from patient-specific, image-based data; and on the related task of extracting the cardiac motion from 4D images. Long-term perspectives for personalized computer simulation of the cardiac function include aid to the diagnosis, aid to the planning of therapy and prevention of risks. To this end, we explore tools and possibilities offered by statistical learning. To personalize cardiac mechanics, we introduce an efficient framework coupling machine learning and an original statistical representation of shape & motion based on 3D+t currents. The method relies on a reduced mapping between the space of mechanical parameters and the space of cardiac motion. The second focus of the thesis is on cardiac motion tracking, a key processing step in the calibration pipeline, with an emphasis on quantification of uncertainty. We develop a generic sparse Bayesian model of image registration with three main contributions: an extended image similarity term, the automated tuning of registration parameters and uncertainty quantification. We propose an approximate inference scheme that is tractable on 4D clinical data. Finally, we wish to evaluate the quality of uncertainty estimates returned by the approximate inference scheme. We compare the predictions of the approximate scheme with those of an inference scheme developed on the grounds of reversible jump MCMC. We provide more insight into the theoretical properties of the sparse structured Bayesian model and into the empirical behaviour of both inference schemes
|
260 |
"Testes de hipótese e critério bayesiano de seleção de modelos para séries temporais com raiz unitária" / "Hypothesis testing and bayesian model selection for time series with a unit root"Ricardo Gonçalves da Silva 23 June 2004 (has links)
A literatura referente a testes de hipótese em modelos auto-regressivos que apresentam uma possível raiz unitária é bastante vasta e engloba pesquisas oriundas de diversas áreas. Nesta dissertação, inicialmente, buscou-se realizar uma revisão dos principais resultados existentes, oriundos tanto da visão clássica quanto da bayesiana de inferência. No que concerne ao ferramental clássico, o papel do movimento browniano foi apresentado de forma detalhada, buscando-se enfatizar a sua aplicabilidade na dedução de estatísticas assintóticas para a realização dos testes de hipótese relativos à presença de uma raíz unitária. Com relação à inferência bayesiana, foi inicialmente conduzido um exame detalhado do status corrente da literatura. A seguir, foi realizado um estudo comparativo em que se testa a hipótese de raiz unitária com base na probabilidade da densidade a posteriori do parâmetro do modelo, considerando as seguintes densidades a priori: Flat, Jeffreys, Normal e Beta. A inferência foi realizada com base no algoritmo Metropolis-Hastings, usando a técnica de simulação de Monte Carlo por Cadeias de Markov (MCMC). Poder, tamanho e confiança dos testes apresentados foram computados com o uso de séries simuladas. Finalmente, foi proposto um critério bayesiano de seleção de modelos, utilizando as mesmas distribuições a priori do teste de hipótese. Ambos os procedimentos foram ilustrados com aplicações empíricas à séries temporais macroeconômicas. / Testing for unit root hypothesis in non stationary autoregressive models has been a research topic disseminated along many academic areas. As a first step for approaching this issue, this dissertation includes an extensive review highlighting the main results provided by Classical and Bayesian inferences methods. Concerning Classical approach, the role of brownian motion is discussed in a very detailed way, clearly emphasizing its application for obtaining good asymptotic statistics when we are testing for the existence of a unit root in a time series. Alternatively, for Bayesian approach, a detailed discussion is also introduced in the main text. Then, exploring an empirical façade of this dissertation, we implemented a comparative study for testing unit root based on a posteriori model's parameter density probability, taking into account the following a priori densities: Flat, Jeffreys, Normal and Beta. The inference is based on the Metropolis-Hastings algorithm and on the Monte Carlo Markov Chains (MCMC) technique. Simulated time series are used for calculating size, power and confidence intervals for the developed unit root hypothesis test. Finally, we proposed a Bayesian criterion for selecting models based on the same a priori distributions used for developing the same hypothesis tests. Obviously, both procedures are empirically illustrated through application to macroeconomic time series.
|
Page generated in 0.0395 seconds