• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

一個組合等式的一對一證明 / A Bijective Proof of a Combinatorial Identity

劉麗珍, Liu, Li Jean Unknown Date (has links)
組合數學的主要目的之一就是要用簡單容易的方法來解決問題。在本篇論文中我們試著用組合的方法去證明以下的等式   ΣC<sup>2k</sup><sub>k</sub>C<sup>2t-2k</sup><sub>t-k</sub>=2<sup>2t</sup>   以往有人用生成函數的方法證出此式,在此我們提出一個不同的方法,希望對此式有一更清楚更深入的瞭解。首先我們先建構兩個集合,其個數各為ΣC<sup>2k</sup><sub>k</sub>C<sup>2t-2k</sup><sub>t-k</sub>和2<sup>2t</sup>。接著在這兩個集合之間,建立一個一對一且映成的函數來完成我們的證明。 / One of the main objective of combinatorial mathematics is to find an easy and simple way to solve problems. In this paper,we try to use a combinatorial method to prove the identity   ΣC<sup>2k</sup><sub>k</sub>C<sup>2t-2k</sup><sub>t-k</sub>=2<sup>2t</sup>   Its proof is known with generating functions. However, we present a different method, hoping to have a clear, and better understanding about this identity.   We construct two sets whose numbers of elements are, respectively,ΣC<sup>2k</sup><sub>k</sub>C<sup>2t-2k</sup><sub>t-k</sub> and 2<sup>2t</sup> and set up a bijective function, between the two sets to complete our proof.
2

一個組合等式的證明 / A Proof of Combinatorial Identity

陳建霖, Chen, Chien-Lin Unknown Date (has links)
在這篇論文中,我們主要是研究一個組合等式如下:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗 在解這個等式時,我們將不使用一般的計算方式:而採用了建構一個對射函數(bijective function)的方法,進而得到上面等式的解。 接著我們推廣此等式為∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=?〗時,我們仍將繼續利用此函數是一對一的特性,為此組合等式求得通解如下,來完成這篇論文。∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=2^(2n+m-1)-〗 ∑_(i=0)^n▒∑_(j=1)^(m-1)▒C(n,i)C(n+m-1,i+j) / In this paper, we will mainly study a combinatorial identity, as the following:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+1,j)=?〗. When solving this identity, we will not use common calculation. Instead, we will build a method of bijective function in order to obtain the solution to the above identity. To finish this paper, we will continue to generalize this identity as ∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=?〗 Then we will be able to use 1-1 property of this function as to get the following solution to the combinatorial identity:∑_(i=0)^n▒∑_(j=0)^i▒〖C(n,i)C(n+m,j)=2^(2n+m-1)-〗 ∑_(i=0)^n▒∑_(j=1)^(m-1)▒C(n,i)C(n+m-1,i+j)
3

一個二項等式的對射證明 / A Bijective Proof of a Binomial Identity

羅富僑, Lo, Fu Chiao Unknown Date (has links)
因以MathType編輯方程式,部份內容無法顯示,故全文請參閱論文電子檔 / 因以MathType編輯方程式,部份內容無法顯示,故全文請參閱論文電子檔
4

Catalan數的對射證明 / A Bijective Proof of Catalan Number

李英杰, Lee, Ing-Jye Unknown Date (has links)
本文的主旨是利用對射函數的方法,證明圓周上2n個點成功配對問題的解是Catalan數.所以必須找一個也是Catalan數的事物來和本問題對應,這裡找的是n個節點的二元數.我們先造一個由成功配對應射到二元數的函數,再證明此函數是一對一且映成,既為對射函數,則我們就可以知道成功配對的解是Catalan數.然後再將問題推廣到3n個點,甚至到kn個點的情形,以得到一般的問題解.
5

開票一路領先的對射證明 / A bijective proof of leading all the way

韓淑惠, Han, Shu-Hui Unknown Date (has links)
本文所討論的是開票一路領先問題。假設有A、B兩位候選人,開票結果A得m票、B得n票,開票過程中A的票數一路領先B的票數,我們將開票過程建立在平面的方格上,由(0,0)開始,A得1票記錄成向量(1,0),B得1票記錄成向量(0,1),分解成路徑後,A一路領先的開票方法數,就是對角線下的全部路徑數。但是算式及轉換步驟有點複雜,所以我們希望能建構一種簡單的模型對應來解決這個問題。 本文找出A至少一路領先m票的方法數,會對應到m×n的全部路徑走法,最後證明這樣的對應是一對一且映成,並猜想若有多位候選人,其中一人一路領先其他候選人的開票過程,也會有相似的對應方法。 / Suppose A and B are candidates for all election. A receives m votes and B receives n votes. If A stays ahead of B as the ballots are counted, we can think of a ballot permutation as a lattice path starting at (0,0), where votes for A are expressed as east (1,0) and votes for B are expressed as north (0,1). How to calculate the number of paths that A is always in the lead? We just count these paths from (0,0) to (m,n) that are under or touch the diagonal. However, the formula of combinatorial mathematics is not easy to obtain. So we hope to construct a model to resolve this problem. In this paper, we establish a one-to-one correspondence. The ways of A to receive at least m votes are always ahead the same as counting paths from (0,0) to (m,n). Finally, we find a bijective proof in the ballot problem. If there are many candidates, it will be a similar correspondence of one candidate leading the others.
6

錯排列的對射證明 / A Bijective Proof of Derangements

洪聰於, Horng, Tsong Yu Unknown Date (has links)
關於錯排列(Derangements)│D<sub>n</sub>│=n│D<sub>n-1</sub>│+(-1)<sup>n</sup> 的證明可用代數方法證出,甚至│D<sub>n</sub>│的個數亦可由生成函數求出,因此我們希望能藉用更直接的觀點加以探討和證明,並找出彼此的對應。   當我們確定了D<sub>n</sub>→n D<sub>n-1</sub>的對應方式,它可以做為密碼的利用,當我們傳送一個D<sub>n</sub>中的碼,可由譯碼的過程(即對應方式),對應到D<sub>n-1</sub>中的一個碼(而且是1對1),因此在機密性方面有很大的幫助。   本文章節安排如下:   第一章錯排列的簡介   第二章如何製造錯排列   第三章錯排列的對應
7

Catalan 族間的一一對應 / One–to–One Correspondence between Catalan Family

許基添, HSU, CHI-TIEN Unknown Date (has links)
本文是針對Catalan 族中部分成員:「n個運算符號之結合律運算」、「n組正規中括號」、「n個節點之相異二元樹」、「圓上2n個點可畫幾種不相交之弦」,做彼此間對應關係的探討。 藉由操作方法,找出Catalan 族成員彼此間對應關係,再利用對射函數方法證明是對的。在證明Catalan 族中任兩個成員間的對應關係,我們先造一個對應函數,再證明此函數是一對一且映成(onto),即此函數為對射函數,則我們的操作方法是可行的。

Page generated in 0.1558 seconds