• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

von Mises-Fisher分配資料的半母數貝氏分析法 / Semi-parametric Bayesian analysis on von Mises-Fisher distribution data

林其緯, Lin,Chi Wei Unknown Date (has links)
在許多科學領域裡所蒐集到的資料是具有方向性且落在單位球上,而在具有方向性且在單位球上的資料分配中,最重要也是最常使用的分配是3維的von Mises-Fisher分配。在過去有許多學者專家曾分析過具有3維von Mises-Fisher分配的資料,其中Nunez-Antonio和Gutierrez-Pena (2005)也曾利用全貝氏法來分析此種資料。本文首次嘗試利用半母數貝氏法來分析具有3維von Mises-Fisher分配的資料。除了介紹如何估計參數以及預測未來資料的機率密度函數外,本文也將檢定兩組分別服從不同3維von Mises-Fisher分配的資料其平均方向是否相同,並且提供選取先驗分配與其參數之建議。
2

結合專家意見與隨機方法:台灣生育率推估 / Combining Expert Opinion with Stochastic Forecast: A Study of Taiwan Fertility Projection

李政豫 Unknown Date (has links)
政府制訂與規劃政策,需要未來人口數或人口結構的資訊,以期能針對國家需求對症下藥;預測未來人口總數及人口結構通稱為人口推估(Population Projection),台灣的官方人口推估由行政院經濟建設委員會負責。人口推估通常使用人口變動要素合成法(The Cohort Component Method),根據現有人口總數及結構,加上對未來生育(Fertility)、死亡(Death)、遷移(Migration)三要素的預期,推估出未來的人口數及其結構;除了參考歷史資料外,目前三要素大多參考專家意見(Expert opinion)決定變動範圍。 在三要素之中,生育和遷移由於變動趨勢較大,較不容易以歷史資料找出趨勢,過去大多倚賴專家意見進行生育和遷移的假設。但專家意見也有蒐集上的疑慮,例如意見沒有固定的形成格式,推估結果也難以機率角度詮釋發生可能性,亦即推估數值大多不隨時間波動。為了彌補專家意見的不足,近年不少國家的人口推估使用隨機方法(Stochastic Methods),大致可分為三種:隨機推估法(Stochastic Forecast)、模擬情境法(Random Scenario Method)和推估誤差法(ex post Method),這三種方法可組合使用,例如Lutz (1995)合併隨機推估和模擬情境,而郭孟坤與余清祥(2008)則是以隨機推估和推估誤差的組合來進行推估,使隨機方法更具有彈性,適用於不同情境的人口推估。 本文目的在於結合專家意見與隨機方法,希冀綜合兩者的優點,提出適用於台灣的人口推估方法。首先,本文提出將專家方法數量化的幾種作法,配合德菲法蒐集專家意見,先以電腦模擬找出較佳的數量化方法;接著再參考由歷史資料及隨機方法(區塊拔靴法)得出的推估結果,分別以主觀角度、貝氏分析(Bayesian Analysis)和貝氏可信度(Bayesian Credibility)的角度進行加權平均,結合專家意見及隨機方法的推估。
3

迴歸模型中自我相關誤差之貝氏分析

蔡淑女, Cai, Shu-Ru Unknown Date (has links)
本文旨在以貝氏分析法來探討誤差項具有自我相關的迴歸模型。全文一冊約三萬兩仟 字,共分為六章,十二節。內容如下: 第一章 緒論:說明迴歸模型,自我相關誤差的意義,及貝氏分析法之理論體系。 第二章 誤差項具有一階自我相關的簡單迴歸模型:分析以傳統抽樣理論法及貝氏分 析法對模型作分析並比較其結果。 第三章 多元迴歸模型:以貝氏法分析自我相關誤差之多元迴歸模型。 第四章 事前分配及其他假設的考慮。 第五章 我國民間消費與個人可支用所得迴歸模型的分析。 第六章 結論。
4

在序列相關因子模型下探討動態模型化投資組合信用風險 / Dynamic modeling portfolio credit risk under serially dependent factor model

游智惇, Yu, Chih Tun Unknown Date (has links)
獨立因子模型廣泛的應用在信用風險領域,此模型可用來估計經濟資本與投資組合的損失率分配。然而獨立因子模型假設因子獨立地服從同分配,因而可能會得到估計不精確的違約機率與資產相關係數。因此我們在本論文中提出序列相關因子模型來改進獨立因子模型的缺失,同時可以捕捉違約率的動態行為與授信戶間相關性。我們也分別從古典與貝氏的角度下估計序列相關因子模型。首先,我們在序列相關因子模型下利用貝氏的方法應用馬可夫鍊蒙地卡羅技巧估計違約機率與資產相關係數,使用標準普爾違約資料進行外樣本資料預測,能夠證明序列相關因子模型是比獨立因子模型合理。第二,蒙地卡羅期望最大法與蒙地卡羅最大概似法這兩種估計方法也使用在本篇論文。從模擬結果發現,若違約資料具有較大的序列相關與資產相關特性,蒙地卡羅最大概似法能夠配適的比蒙地卡羅期望最大法好。 / The independent factor model has been widely used in the credit risk field, and has been applied in estimating the economic capital allocations and loss rate distribution on a credit portfolio. However, this model assumes independent and identically distributed common factor which may produce inaccurate estimates of default probabilities and asset correlation. In this thesis, we address a serially dependent factor model (SDFM) to improve this phenomenon. This model can capture both dynamic behavior of default risk and dependence among individual obligors. We also address the estimation of the SDFM from both frequentist and Bayesian point of view. Firstly, we consider the Bayesian approach by applying Markov chain Monte Carlo (MCMC) techniques in estimating default probability and asset correlation under SDFM. The out-of-sample forecasting for S&P default data provide strong evidence to support that the SDFM is more reliable than the independent factor model. Secondly, we use two frequentist estimation methods to estimate the default probability and asset correlation under SDFM. One is Monte Carlo Expectation Maximization (MCEM) estimation method along with a Gibbs sampler and an acceptance method and the other is Monte Carlo maximum likelihood (MCML) estimation method with importance sampling techniques.

Page generated in 0.0257 seconds