• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 496
  • 435
  • 202
  • 36
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1210
  • 1210
  • 1065
  • 1061
  • 1056
  • 884
  • 695
  • 691
  • 688
  • 687
  • 138
  • 138
  • 136
  • 122
  • 121
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Bioremediation of Toxic Metals for Protecting Human Health and the Ecosystem

Rahman, Aminur January 2016 (has links)
Heavy metal pollutants, discharged into the ecosystem as waste by anthropogenic activities, contaminate drinking water for millions of people and animals in many regions of the world. Long term exposure to these metals, leads to several lethal diseases like cancer, keratosis, gangrene, diabetes, cardio- vascular disorders, etc. Therefore, removal of these pollutants from soil, water and environment is of great importance for human welfare. One of the possible eco-friendly solutions to this problem is the use of microorganisms that can accumulate the heavy metals from the contaminated sources, hence reducing the pollutant contents to a safe level. In this thesis an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, a chromium resistant bacterium Enterobacter cloacae B2-DHA and a nickel resistant bacterium Lysinibacillus sp. BA2 were isolated and studied. The minimum inhibitory concentration values of these isolates are 500 mM sodium arsenate, 5.5 mM potassium chromate and 9 mM nickel chloride, respectively. The time of flight-secondary ion mass spectrometry and inductively coupled plasma-mass spectroscopy analyses revealed that after 120 h of exposure, the intracellular accumulation of arsenic in B1-CDA and chromium in B2-DHA were 5.0 mg/g dwt and 320 μg/g dwt of cell biomass, respectively. However, the arsenic and chromium contents in the liquid medium were reduced to 50% and 81%, respectively. The adsorption values of BA2 when exposed to nickel for 6 h were 238.04 mg of Ni(II) per gram of dead biomass indicating BA2 can reduce nickel content in the solution to 53.89%. Scanning electron micrograph depicted the effect of these metals on cellular morphology of the isolates. The genetic composition of B1-CDA and B2-DHA were studied in detail by sequencing of whole genomes. All genes of B1-CDA and B2-DHA predicted to be associated with resistance to heavy metals were annotated. The findings in this study accentuate the significance of these bacteria in removing toxic metals from the contaminated sources. The genetic mechanisms of these isolates in absorbing and thus removing toxic metals could be used as vehicles to cope with metal toxicity of the contaminated effluents discharged to the nature by industries and other human activities.
522

Selection and prioritization of organic contaminants for monitoring in the drinking water value chain

Ncube, Esper Jacobeth 09 October 2010 (has links)
The occurrence of organic contaminants in the drinking water value chain (from source to tap) is a growing concern for the Drinking Water industry and its consumers given the high risk these contaminants can cause to the general public. These adverse health effects include such as endocrine disruption, toxicity teratogenicity, mutagenicity and carcinogenicity. Some of these organic contaminants are included in national and international drinking water quality guidelines or standards. However, although there are similarities in the list of organic contaminants used by each organization or country, the organic contaminants are never the same given the local conditions. There are also noticeable differences in the concentration limits set as targets or criteria for organic contaminants for public health protection via the use of drinking water. A further question requiring the response from drinking water regulators was whether the standards listed in the international literature would be applicable in other countries like South Africa. Complicating this decision is the fact that the South African National Drinking Water Standard (SANS 241) does not adequately address this component of drinking water quality management. The current standard only provides for dissolved organic carbon (DOC), total trihalomethanes (TTHMs) and phenols. However, the standard contains a statement which specifies that if there is a known organic contaminant, that may pose a health threat, it should be included in the monitoring programme and evaluated against World Health Organization (WHO) guidelines. To safeguard Drinking Water industry customers, it was deemed necessary to investigate this matter and establish a tool to assist with the identification of a list of organic contaminants to be monitored in the drinking water value chain. To achieve this a specific procedure/protocol needed to be developed, hence the aim of this study which was to develop a generic protocol for the selection and prioritization of organic contaminants for monitoring in the drinking water value chain (from source to tap). To achieve this, a critical evaluation and synthesis of the available literature on the approaches for the selection and prioritization of organic variables of priority to the drinking water industry was undertaken as a first step. From the literature review it was evident that there are currently many selection and prioritization approaches which are characterized mainly by the purpose for which the exercise has been conducted for. Approaches that prioritize chemicals according to their importance as environmental contaminants have been developed by government agencies and private industries such as the Health Canada’s Canadian Environmental Protection Agency (CEPA), the United Kingdom’s Institute for Environmental Health (IEH), the European Community’s Oslo and Paris (OSPAR) convention exercise for the protection of the Northeast Atlantic marine environment and the European Union (EU)’s combined monitoring based and modelling based priority setting scheme (EU-COMMPs). A few approaches such as ones published by the United States Environmental Protection Agency (USEPA), address the needs of the Drinking Water industry and there is no generic approach to the selection, prioritization and monitoring of organic contaminants in the drinking water value chain. From the review of selection and prioritization approaches, a generic model was developed. The model consists of three main steps, the compilation of a “pool of organic contaminants, the selection of relevant parameters and criteria to screen organic contaminants and finally the application of criteria to select priority organic contaminants. It was however realized that these steps were not enough if the protocol to be develop will serve its purpose. Selection and prioritization approaches are typically intended to be fairly simple and quick methods for determining the health and environmental hazards posed by the use and release of chemical substances into different environmental systems. This was taken into account during the development of the current protocol. Understanding that a protocol is a predefined written procedural method in the design and implementation of tasks and that these protocols are written whenever it is desirable to standardize a method or procedure to ensure successful reproducibility in a similar set up, a generic protocol was developed based on the model. The protocol developed in this study, operates as a multidisciplinary contaminants management and proactive protocol, thus exchanges toxicological, water quality, agricultural, chemical and public health information. The protocol uses previous or readily available information as a point of departure. It seeks to address the challenge facing the water industry in managing the current and emerging organic contaminants that are relevant to public health protection via the use of drinking water. Once the protocol was developed, it was validated in a prototype drinking water value chain. The exercise comprised of testing each step of the protocol from the selection of the “pool of organic contaminants (Step I) to recommending the final priority list of organic contaminants (Step VII). The implementation was successfully conducted in the Rand Water drinking water value chain. Emphasis of expert judgment was made as each step was validated and the opinion of key stakeholders used to shape the process. During Step III of the protocol, an intensive literature review was conducted to determine organic contaminants that have been identified in ground and surface water systems across the world. As a result of this review, major groups of organic contaminants that have been found to occur in source water resources across the world were identified. The identified groups of organic contaminants include, pesticides, polynuclear aromatic hydrocarbons, per and polyfluoroorganic compounds, polycyclic aromatic hydrocarbons, alkanes and alkenes, C10-C13 Chloroalkanes, pharmaceuticals and personal care products [PPCPs], surfactants, benzotriazoles, cyanotoxins and Carbon-based engineered nanoparticles. The risk profile of the identified organic contaminants was established using the persistence, bio-accumulation and toxicity criteria and the development of water quality monographs as an information dissemination tool. A conceptual framework for the implementation of the protocol by water utilities and relevant institutions has been developed from the experiences learnt during the validation exercise and a priority list of organic contaminants for the monitoring in the drinking water value chain to be used by Rand Water and other water utilities was identified. Some of the organic contaminants on this are currently being analyzed for in The Rand Water’s routine organic monitoring programme. During the validation exercise, the following were noted, <ul> <li>During the identification of the “pool of organic contaminants” from the consulted information sources such as the WHO guidelines for drinking water quality, Health Canada drinking water quality guidelines, the USEPA drinking water quality standards, the New Zealand drinking water quality standards, USEPA IRIS database, the PAN-UK list of registered pesticides for South Africa, the IARC list for recognized carcinogens and the Department of Agriculture pesticides manuals duplications were observed. </li> <li>The time allocated could not allow for the development of water quality monographs for all organic contaminants of concern but for a few selected contaminants whose information was inadequate to allow for decision-making. </li> <li>The determination of concentration levels of organic contaminants in fish, sediment and water samples could have been limited by the failure of current analytical instruments to go down to lower levels at which they occur in the drinking water value chain. <l/i> <li>Only two events could be planned, during the wet season (high flow) and dry season (low flow) based on time and budget constraints. </li> <li>Although various experts were consulted and invited to attend workshops in order to validate the process, the attendance could not be extended to all nine provinces given the time and budget constraints. <br></li></ul> Based on the above, recommendations were made for the dissemination and use of the products emanating from this study. For example, it is recommended that the current protocol be made available to water utilities and the process of revising the current priority list be repeated every 5 years. Further research should be conducted to obtain full coverage of organic contaminants impacting on source water quality in all ground water and surface water systems used as sources for drinking water production. Another major recommendation is the investigation of potential analytical methods that current chromatographic methods with high resolution mass spectrometry to ensure that organic contaminants can be detected at the ng/l to pg/l using a single enrichment method in order to make sure that those organic contaminants that occur at very low concentration in environmental samples can be detected. For example, the realisation that compounds such as synthetic organic polymer residues, emerging disinfectant by-products, detergent metabolites, chlorinated benzenes, alkyl phenol, polyethoxylates, their metabolites and cyanotoxins are continuously discharged into the environment via wastewater and industrial effluent discharges which increases their concentration in aquatic environment and concomitantly their potential to exert adverse health effects in water used as source for the production of drinking water necessitates that each of these groups be added to the current monitoring programme. The current water quality monographs can be used for the benefit of the Drinking Water industry. It is also recommended that a training manual on the production and use of water quality monographs is produced to facilitate their dissemination. CD-ROMs on the water quality monographs can be produced and distributed with the manual. / Thesis (PhD)--University of Pretoria, 2010. / School of Health Systems and Public Health (SHSPH) / PhD / Unrestricted
523

Bioremediation of Toxic Metals for Protecting Human Health and the Ecosystem

Rahman, Aminur January 2016 (has links)
Heavy metal pollutants, discharged into the ecosystem as waste by anthropogenic activities, contaminate drinking water for millions of people and animals in many regions of the world. Long term exposure to these metals, leads to several lethal diseases like cancer, keratosis, gangrene, diabetes, cardio- vascular disorders, etc. Therefore, removal of these pollutants from soil, water and environment is of great importance for human welfare. One of the possible eco-friendly solutions to this problem is the use of microorganisms that can accumulate the heavy metals from the contaminated sources, hence reducing the pollutant contents to a safe level. In this thesis an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, a chromium resistant bacterium Enterobacter cloacae B2-DHA and a nickel resistant bacterium Lysinibacillus sp. BA2 were isolated and studied. The minimum inhibitory concentration values of these isolates are 500 mM sodium arsenate, 5.5 mM potassium chromate and 9 mM nickel chloride, respectively. The time of flight-secondary ion mass spectrometry and inductively coupled plasma-mass spectroscopy analyses revealed that after 120 h of exposure, the intracellular accumulation of arsenic in B1-CDA and chromium in B2-DHA were 5.0 mg/g dwt and 320 μg/g dwt of cell biomass, respectively. However, the arsenic and chromium contents in the liquid medium were reduced to 50% and 81%, respectively. The adsorption values of BA2 when exposed to nickel for 6 h were 238.04 mg of Ni(II) per gram of dead biomass indicating BA2 can reduce nickel content in the solution to 53.89%. Scanning electron micrograph depicted the effect of these metals on cellular morphology of the isolates. The genetic composition of B1-CDA and B2-DHA were studied in detail by sequencing of whole genomes. All genes of B1-CDA and B2-DHA predicted to be associated with resistance to heavy metals were annotated. The findings in this study accentuate the significance of these bacteria in removing toxic metals from the contaminated sources. The genetic mechanisms of these isolates in absorbing and thus removing toxic metals could be used as vehicles to cope with metal toxicity of the contaminated effluents discharged to the nature by industries and other human activities.
524

Climate-related Stresses on Human Health in a Remote and Rural Region of Ontario, Canada

Clarke, Kaila-Lea January 2012 (has links)
This thesis examines the susceptibility of human health to climate-related stresses in the rural municipality of Addington Highlands, Ontario. Human health is sensitive to climatic variations and change, and public health systems play a role in managing climate-related risks. Canada is generally deemed to have considerable capacity to adapt to vulnerabilities associated with climate change, yet there is variability among communities in their exposure and ability to manage health risks. This thesis examines the health-related vulnerability of the community of Addington Highlands. Drawing upon data gained from key informant interviews and newspaper articles, as well as other secondary data sources, the thesis documents climate-related health risks, outlines the programs and services available to deal with those risks, and assesses the capacity of the community to adapt to future climate conditions and risks. Conditions such as storms, heat stress and forest fires currently present health risks in the area, and they are expected to become more prevalent with climate change. The health risks of Lyme disease, West Nile virus and algal blooms are likely to increase in the future as the climate continues to change. Adaptation to these risks is evident in several of Addington Highlands public health and emergency management programs. The community’s adaptive capacity is strengthened by its social networks and institutional flexibility, but it is constrained by its aging population, limits to the availability and access to health care services, and challenges relating to the retention of service providers. An important strategy to assist adaptation to climate change risks to health is the promotion of public awareness, a strategy to which this research contributes. This thesis research serves to identify and better understand vulnerabilities, and help stimulate actions toward preparing Addington Highlands for possible future climate-related risks.
525

Understanding the Links Between Human Health and Climate Change: Agricultural Productivity and Allergenic Pollen Production of Timothy Grass(Phleum pratense L.) Under Future Predicted Levels of Carbon Dioxide and Ozone

Albertine, Jennifer M. 01 September 2013 (has links)
The prevalence of allergic disease is expected to increase with climate change. Grasses, which have highly allergenic pollen, are widely distributed across the globe. Changes in production and allergen content of grass pollen have not been specifically investigated. We tested the effects of elevated carbon dioxide and ozone on growth, pollen and allergen production of Timothy grass (Phleum pratense L.). Timothy is also used as an agricultural forage crop so changes in plant productivity can also affect humans indirectly. Plants were fumigated in eight chambers at two concentrations of ozone (O3; 30 and 80 ppb) and carbon dioxide (CO2; 400 and 800 ppm) to simulate present and future projected levels. Destructive harvests were completed every three weeks to measure productivity. Pollen was collected in polyethylene bags placed around flowers and assessed for pollen number and concentration of the allergenic protein, Phl p 5. We found that elevated CO2 significantly increased the amount of pollen produced per flower regardless of O3 level. In addition, the amount of Phl p 5 allergen per flower was significantly increased in plants grown at elevated CO2 / low O3 conditions. We also found that plants grown in both elevated CO2 and elevated O3 increased the amount of pollen produced per weight of flower. The Phl p 5 allergen content per pollen grain was significantly reduced by elevated O3, as was flower length and weight. However, this was partially ameliorated by elevated CO2. Productivity was affected negatively by elevated O3 throughout the life cycle. CO2 increased shoot productivity during the intermediate stages of life and also ameliorated the negative impacts of elevated O3. We conclude that increasing levels of CO2 will cause a 2.5 times increase in Timothy grass pollen production thus increasing human airborne pollen exposure. Increases in pollen were likely a result of increased shoot biomass in the stages leading up to reproduction. If Timothy grass is a good model for other grasses, this portends for increased allergy suffering worldwide and an important health impact of global climate change.
526

Application of a New Approach Methodology (NAM)-based Strategy for Genotoxicity Assessment of Data-poor Compounds

Fortin, Anne-Marie 06 December 2022 (has links)
The conventional battery for genotoxicity testing is not well-suited to assessing the large number of chemicals needing evaluation. Traditional in vitro tests lack throughput capacity, provide little mechanistic information, and have poor specificity in predicting in vivo genotoxicity. The Health Canada GeneTox21 research program is developing a multi-endpoint platform for modernized in vitro genotoxicity assessment. The GeneTox21 assays include the TGx-DDI transcriptomic biomarker (i.e., 64-gene expression signature to identify DNA damage-inducing (DDI) substances), the MicroFlow® assay (i.e., a flow cytometry-based micronucleus (MN) test), and the MultiFlow® assay (i.e., a multiplexed flow cytometry-based reporter assay that yields mechanism-of-action (MoA) information). As part of GeneTox21 development, the objective of this study was to investigate the utility of the TGx-DDI transcriptomic biomarker, multiplexed with the MicroFlow® and MultiFlow® assays, as an integrated testing strategy for screening data-poor substances prioritized by Health Canada’s New Substances Assessment and Control Bureau. Human lymphoblastoid TK6 cells were exposed to 3 control and 10 data-poor substances, using a 6-point concentration range. Cells were exposed for 4 hours with or without exogenous metabolic activation. Gene expression profiling was conducted using the targeted TempO-SeqTM assay, and the TGx-DDI classifier was applied to the dataset. Classifications were compared with those based on the MicroFlow® and MultiFlow® assays. Benchmark Concentration (BMC) modeling was used for potency ranking. The results of the integrated hazard calls indicate that five data-poor compounds are genotoxic in vitro, causing DNA damage via a clastogenic MoA, and one is positive via a pan-genotoxic MoA. Two compounds are likely irrelevant positives in the MN test; two are considered possibly genotoxic causing DNA damage via an ambiguous MoA. From quantitative analyses of concentration-response data, we observed nearly identical potency rankings for each assay with two main potency groups being observed. This ranking was maintained when all endpoint BMCs were converted into a single score using the Toxicological Prioritization (ToxPi) approach. Overall, this study contributes to the establishment of a modernized approach for effective genotoxicity assessment and chemical prioritization for further regulatory scrutiny. We conclude that integration of the TGx-DDI biomarker with other GeneTox21 assays is an effective NAM-based strategy for genotoxicity assessment of data-poor compounds.
527

Of Bugs and Wildfires: Tracing the Impacts of Changing Wildfire Regimes on Aquatic Bacteria and Macroinvertebrates Using eDNA

Errigo, Isabella M. 15 December 2022 (has links) (PDF)
Human disruption of climate, habitat, and ignition has altered the behavior of wildland fire at local to continental scales. In many regions, novel fire regimes are emerging that threaten to exceed the capacity for local management to protect human wellbeing and ecosystem function. Simultaneous changes in climate, species composition, and fire management have resulted in extreme fire behavior in many regions. For the Western United States, the emerging novel fire regime consists of more frequent, severe, and intense wildfires, with annual area burned by wildfire having doubled and high-severity wildfire area having increased 8-fold since the 1980s. The impacts of these increasing stresses in the Great Basin is especially pressing when combined with the many years of historically poor resource management. Here we complete a literature review of changing wildfire regimes globally (chapter 1) and a study of how the abiotic and biotic aspects of aquatic ecosystems stabilize after a megafire in the western United States (chapter 2).
528

Black flies (Diptera: Simuliidae) occurring in Mississippi, and their medical, veterinary, and economic impacts

Nations, Tina M 09 August 2019 (has links)
Little is known about black fly pest species in Mississippi, other than research from the 1930s. A better understanding of the pest species that occur in Mississippi is important for human and animal health. My research focused on what species of black flies occur in Mississippi, their seasonality and distribution, and a detailed systematic survey of the primary pest species. Lastly, I attempted to quantify nuisance effects and economic impacts of black flies on people, backyard poultry, and livestock. I examined scientific literature and records of black flies occurring in the southeastern U.S., and particularly Mississippi. This search revealed several unpublished manuscripts by Dr. George H. Bradley on the biology, ecology, and control of black flies in the Mississippi Delta during the 1930s. These publications were curated and made available to the scientific community. I identified and compiled an annotated list of larval, pupal, and adult stages of black flies occurring in Mississippi, derived from specimens housed in the Mississippi State University Entomological Museum (MEM). These specimens had been collected over several decades by a variety of entomologists, students, and the public. In addition, I included data from thousands of black flies collected during this project. To assess seasonality and relative abundance of the primary pest black fly species in Mississippi, I systematically collected adult black fly specimens for two years, documenting species present, seasonality, adult emergence patterns, and associated meteorological conditions. These ten sites were selected based on Dr. George Bradley's extensive work and complaints from local county extension agents, veterinarians, and municipal public works personnel. For economic, human, and animal health impacts of black flies, I employed a four-tiered approach: 1) a survey of lay and medical literature for reports of human health problems from black fly bites, 2) a query of city and county public works personnel concerning black fly nuisance effects, 3) an analysis of statewide hospital outpatient International Classification of Diseases-9 (ICD-9) discharge data and lastly, 4) a statewide survey of backyard poultry owners to ascertain animal health and monetary impacts from black flies.
529

Developing a Prototypical Biophilic Localized Natural Airflow Simulator (BLNAS) for a Modular Workstation

Rabab'ah, Ikhlas Oqlah 22 April 2024 (has links)
Doctor of Philosophy / Architects have long been focused on designing eco-friendly buildings, but there's a growing realization that focusing solely on energy efficiency isn't enough. Occupants spend the majority of their time indoors, and the quality of these indoor spaces profoundly impacts their well-being and productivity. Yet, often overlooked, are factors like lighting, air quality, and noise that can significantly affect how occupants feel and perform. With rising urbanization and recent experiences during the COVID-19 pandemic highlighting the importance of indoor environments, there's a renewed emphasis on user-centric design. Biophilic design, which incorporates elements of nature into buildings, has emerged as a promising approach to enhancing occupants' health, wellness, and well-being. Airflow, a critical aspect of biophilic design, plays a key role in creating healthier indoor spaces. This study aims to develop a prototype system that mimics natural airflow patterns indoors to promote occupants' health and well-being. By analyzing weather data, natural airflow features were identified and used to inform the design of a mechanical system. The goal is to create settings that replicate natural airflow patterns in indoor environments. Ultimately, this research lays the groundwork for future studies to explore how such biophilic systems impact occupants' physiological and psychological health. By prioritizing user experience in building design, indoor spaces that not only conserve energy but also enhance the quality of life could be developed.
530

Heterogeneous photocatalytic degradation of organic pollutants in water over nanoscale powdered titanium dioxide. The photocatalytic degradation of organic compounds in water (Reactive Orange 16, Triclocarbon, Clopyralid and Estrogens (estrone, 17ß-estradiol, and 17α-ethinylestradiol)) was studied; the reaction kinetics and the effect of the operating parameters on the performance of the system were determined; a comparison with other advanced oxidation processes (O3, H2O2, UV) was also made.

Mezughi, Khaled M. January 2010 (has links)
Organic contaminants from industrial and/or domestic effluents may be harmful to humans directly or indirectly by degrading the quality of the aquatic environment. Consequently these contaminants must be reduced to levels that are not harmful to humans and the environment before disposal. Chemical, physical and biological methods exist for the removal of these pollutants from effluents. Among the available chemical methods, heterogeneous photocatalytic oxidation has been found particularly effective in removing a large number of persistent organics in water. In this study, photocatalytic degradation was explored for the removal of reactive azo-dye (textile dye), triclocarban (disinfectant), clopyralid (herbicide) and three endocrine disrupting compounds (EDCs) (estrone, 17ß-estradiol and 17α-ethinylestradiol) from synthetic effluents. The major factors affecting the photocatalytic processes including the initial concentration of the target compounds, the amount of catalyst, the light intensity, the type of catalyst, the electron acceptor, the irradiation time and the pH were studied. Other oxidation techniques including (O3, H2O2, UV) were also studied. Generally UV light is used in combination with titanium dioxide, as photocatalyst, to generate photoinduced charge separation leading to the creation of electron-hole pairs. The holes act as electron acceptors hence the oxidation of organics occur at these sites. These holes can also lead to the formation of hydroxyl radicals which are also effective oxidants capable of degrading the organics. The results obtained in this study indicated that photolysis (i.e. UV only) was found to have no effect on the degradation of reactive azo-dye (RO16). However, complete photocatalytic degradation of 20 mg/L (3.24×10-2 mM) RO16 was achieved in 20 minutes in the presence of 1g/L TiO2 Degussa P25 at pH 5.5. Comparison between various types of catalysts (i.e. Degussa P25, VP Aeroperl, Hombifine N) gave varied results but Degussa P25 was the most effective photocatalyst hence it was selected for this study. For RO16 the optimum catalyst concentration was 0.5 g/L TiO2 with initial concentration of 20 mg/L RO16. It was found that the disappearance of RO16 satisfactorily followed the pseudo first-order kinetics according to Langmuir-Hinshelwood (L-H) model. The rate constant was k= 0.0928 mol/min. Photodegradation of TCC was studied in 70%v acetonitrile: 30%v water solutions. UV light degraded TCC effectively and the reaction rates increased with decreasing initial concentration of TCC. UV/TiO2 gave unsatisfactory degradation of triclocarban (TCC) since only 36% were removed in 60 minutes with initial concentration of TCC 20 mg/L. The degradation of clopyralid and the EDCs was studied using three oxidation systems UV/TiO2, UV/H2O2 and O3. Complete degradation of clopyralid (3,6-DCP) was achieved with UV/TiO2 in about 90 minutes at an optimum catalyst concentration of 1g/L. Zero-order kinetics was found to describe the first stage of the photocatalytic reaction in the concentration range 0.078-0.521 mM. At pH 5 the rate constant was 2.09×10-6-4.32×10-7 M.s-1.Complete degradation of all the three EDCs was achieved with UV/H2O2 in 60 minutes at catalyst concentration of (2.94×10-2 M). On the other hand complete degradation of the EDCs was achieved in just 2 minutes with ozonation. For high concentration EDCs, TiO2/UV gave low efficiency of degradation as compared with ozone and H2O2/UV. First-order kinetics was found to describe the photocatalytic reaction of the EDCs. / Education Service Department of the Libyan Government

Page generated in 0.0713 seconds