• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 900
  • 40
  • 34
  • 32
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 3
  • 3
  • Tagged with
  • 1467
  • 466
  • 312
  • 284
  • 199
  • 183
  • 177
  • 174
  • 161
  • 151
  • 145
  • 135
  • 126
  • 121
  • 120
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
741

Distribution and modulatory roles of neuropeptides and neurotransmitters in the Drosophila brain

Kahsai Tesfai, Lily January 2010 (has links)
The central complex is a prominent neuropil found in the middle of the insect brain. It is considered as a higher center for motor control and information processing. Multiple neuropeptides and neurotransmitters are produced in neurons of the central complex, however, distribution patterns and functional roles of signaling substances in this brain region are poorly known. Thus, this thesis focuses on the distribution of signaling substances and on modulatory roles of neuropeptides in the central complex of Drosophila. Immunocytochemistry in combination with GAL4/UAS technique was used to visualize various signaling substances in the central complex. We revealed different central-complex neurons expressing the neuropeptides; Drosophila tachykinin (DTK), short neuropeptide F (sNPF), myoinhibitory peptide (MIP), allatostatin A, proctolin, SIFamide, neuropeptide F and FMRFamide. Subpopulations of DTK, sNPF and MIP-expressing neurons were found to co-localize a marker for acetylcholine. In addition, five metabotropic neurotransmitter receptors were found to be expressed in distinct patterns. Comparison of receptor/ligand distributions revealed a close match in most of the structures studied. By using a video-tracking assay, peptidergic modulation of locomotor behavior was studied. Different DTK and sNPF-expressing neurons innervating the central complex were revealed to modulate spatial distribution, number of activity-rest phases and activity levels, suggesting circuit dependent modulation. Furthermore, neurosecretory cells in the Drosophila brain that co-express three types of neuropeptides were shown to modulate stress responses to desiccation and starvation. In summary, we have studied two different neuropeptides (DTK and sNPF) expressed in interneuronal circuits and neurosecretory cells of the Drosophila brain in more detail. We found that these neuropeptides display multiple actions as neuromodulators and circulating hormones, and that their actions depend on where they are released. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: In press. Paper 3: Manuscript.
742

Brain Stem Involvement in Immune and Aversive Challenge

Paues, Jakob January 2006 (has links)
Activation of the immune system by e.g. bacteria induces the acute-phase-response and sickness behaviour. The latter encompasses among other things fever, lethargy, anorexia and hyperalgesia. An often used model to study sickness behaviour is the intravenous injection of the gram negative bacterial endotoxin lipopolysaccharide (LPS). LPS induces the production of inflammatory mediators, such as cytokines and prostaglandins, which in turn can interact with the central nervous system (CNS) to affect behaviour. The CNS also memorises substances that have made us sick in the past to avoid future harm, a phenomenon called conditioned taste aversion (CTA). An often used model to study CTA is the intraperitoneal injection of LiCl. The pontine parabrachial nucleus (PB) is an autonomic relay nucleus situated in the rostral brain stem that integrates afferent somatosensory and interoceptive information and forwards this information to the hypothalamus and limbic structures. PB is crucial for the acquisition of CTA and PB neurons are activated by many anorexigenic substances. Further, PB neurons express neuropeptides, among those calcitonin gene related peptide (CGRP) and enkephalin, both of which have been implicated in immune signalling, nociception, food intake, and aversion. By using a dual-labelling immunohistochemical/in situ hybridization technique we investigated if enkephalinergic neurons in PB are activated by systemic immune challenge. While there were many neurons in the external lateral parabrachial subnucleus (PBel) that expressed the immediate early gene fos after intravenous injection of LPS and while a large proportion of the PBel neurons expressed preproenkephalin, there were very few double-labelled cells. The fos-expressing cells were predominantly located to the outer part of the PBel (PBelo), whereas the preproenkephalin-expressing PBel neurons were located closest to the peduncle. Thus we conclude that although enkephalin has been implicated in autonomic and immune signalling, enkephalinergic neurons in PB do not seem to be activated by immune stimulation (paper I). To further characterise the PBelo neurons activated by immune challenge we investigated if these neurons expressed CGRP. Dual-labelling in situ hybridisation showed that PBelo neurons that expressed fos after intravenous injection of LPS to a large extent co-expressed CGRP mRNA, indicating that CGRP may be involved in the regulation of the sickness response in immune challenge (paper II). Using dual-labelling immunohistochemistry we examined if PBel neurons activated by an immune stimulus projected to the amygdala, a limbic structure implicated in the affective response to homeostatic challenge. Animals were injected with the retrograde tracer substance cholera toxin b (CTb) into the amygdala and subsequently subjected to immune challenge. We found that approximately a third of the neurons that expressed fos after the intravenous injection of LPS also were labelled with CTb. Thus PBel neurons activated by immune challenge project to the amygdala. The PBel-amygdala pathway has earlier been suggested to be important in nociceptive signalling. To investigate if amygdala-projecting PBel neurons are activated by nociceptive stimuli we again injected animals with CTb into the amygdala. After recovery the animals were injected with formalin into a hindpaw. Dual-labelling immunohistochemistry against fos and CTb showed that very few noxiously activated PB neurons projected to the amygdala. Thus, the PBel-amygdala projection seems to be important in immune challenge but not in nociceptive signalling (paper III). Many PBel neurons express fos after intraperitoneal injection of LiCl. Melanocortins are neuropeptides that recently have been implicated in metabolism, food intake and aversive mechanisms. The PB is known to express melanocortin receptor-4 (MC4-R) mRNA. Using dual-labelling in situ hybridization we investigated if PB neurons activated by intravenous injection of LPS or intraperitoneal injection of LiCl expressed MC4-R mRNA. We found that many PBelo neurons were activated by either LPS or LiCl and that a large proportion of such activated neurons expressed MC4-R mRNA. Further, using dual-labelling in situ hybridization against MC4-R mRNA and CGRP mRNA, we found that a large proportion of the CGRP positive PBelo neurons also expressed MC4-R mRNA. In summary, this thesis shows that CGRP-expressing neurons in the PBel are activated by peripheral immune challenge, that lipopolysaccharide-activated PBel neurons project to the amygdala, that the amygdala-projecting neurons in the PBel are CGRP-positive, and that PBel neurons activated by immune or aversive challenge express MC4-R. Taken together, these data suggest the presence of a melanocortin-regulated CGRP-positive pathway from the PBel to the amygdala that relays information of importance to certain aspects of sickness behaviour. / On the day of the defence date the title of article II was: Feeding-related immune responsive brain stem neurons: association with CGRP. Article II: Erratum for in Neuroreport 2001;12(16):inside back cover. Neuroreport 2001;12(13):inside back cover. Article III: Erratum in: J Comp Neurol. 2005; 483:489-90.
743

Novel Interactors of X-linked Inhibitor of Apoptosis Protein : Expression and Effects on Tumor Cell Death

Steen, Håkan January 2008 (has links)
Programmed cell death, or apoptosis, has during the last decade received a lot of attention due to its involvement in a large number of pathological conditions. Since death is always irreversible, it is important for cells to fully control the initiation and execution of this process. One of many apoptosis-regulatory proteins is XIAP, which blocks the action of caspases, a family of proteases that are important during apoptosis. However, apoptosis inhibitors have to be tightly controlled since too little cell death can lead to the development of tumors and other diseases. This thesis is the result of an aspiration to fully understand the function and regulation of XIAP. By using the yeast-2-hybrid system, we identified two novel binding partners of XIAP. The first, GPS2, was found to bind XIAP and inhibit its ability to block caspase-activity. In addition, GPS2 induced caspase-mediated cell death in two different tumour cell lines and XIAP inhibited this effect. The second binding partner, Nulp1, preferentially bound XIAP in the presence of the apoptosis-inducer staurosporine. Nulp1 induced or sensitized cell lines to cell death when overexpressed, but this was not blocked by caspase-inhibitors or XIAP, suggesting a different reason for binding than apoptosis regulation. With the aim to understand the Nulp1-XIAP interaction, we continued to study Nulp1 in vivo and in vitro. We studied three different splice variants of Nulp1 and found that they were regulated by poly-ubiquitination and nuclear shuttling. Also, Nulp1 was expressed in embryonic mice, especially in the cortical plate, hippocampal neurons and cerebellar granular neurons. Expression of Nulp1 decreased with age but was still present in cerebellar deep nuclei and Purkinje cells of adult mice. To summarize, we have identified GPS2 as an apoptosis-inducing factor and an inhibitor of XIAP in vitro, and Nulp1 as a XIAP-interacting protein during staurosporine-induced apoptosis.
744

On dopamine neurons : nerve fiber outgrowth and L-DOPA effects

af Bjerkén, Sara January 2008 (has links)
Parkinson’s disease is a disorder mainly characterized by progressive degeneration of dopamine producing neurons in the substantia nigra of the midbrain. The most commonly used treatment strategy is to pharmacologically restore the lost function by the administration of the dopaminergic precursor L-DOPA. Another treatment strategy is to replace the degenerated neurons with immature fetal ventral mesencephalic tissue, or ultimately stem cell-derived tissue. Grafting trials have, however, revealed poor reinnervation capacity of the grafts, leaving much of the striata dopamine-denervated. An additional drawback is the upcoming of dyskinesia (involuntary movements), a phenomenon also observed during L-DOPA treatment of Parkinson’s disease patients. Attempts to characterize nerve fiber formation from dopamine neurons have demonstrated that the nerve fibers are formed in two morphologically diverse outgrowth patterns, one early outgrowth seen in the absence of astrocytes and one later appearing outgrowth seen in co-existence with astrocytes. The overall objective of this thesis has been to study the dopaminergic outgrowth including guidance of nerve fiber formation, and to look into the mechanisms of L-DOPA-induced dyskinesia. The first paper in this thesis characterizes the different outgrowth patterns described above and their relation to different glial cells. The study demonstrated the two different outgrowth patterns to be a general phenomenon, applying not only to dopamine neurons. Attempts of characterization revealed no difference of origin in terms of dopaminergic subpopulations, i.e. A9 or A10, between the outgrowth patterns. Furthermore, the “roller-drum” technique was found optimal for studying the dual outgrowth sequences. The second and the third paper also utilized the “roller-drum” technique in order to promote both patterns of neuronal fiber formation. The effects of glial cell line-derived neurotrophic factor (GDNF) on the formation of dopamine nerve fibers, was investigated. Cultures prepared from gdnf knockout mice revealed that dopaminergic neurons survive and form nerve fiber outgrowth in the absence of GDNF. The dopaminergic nerve fibers exhibited an outgrowth pattern consistent with that previous observed in rat. GDNF was found to exert effect on the glial-associated outgrowth whereas the non-glial-associated was not affected. Astrocytic proliferation was inhibited using cytosine β-D-arabinofuranoside, resulting in reduced glial-associated outgrowth. The non-glial-associated dopaminergic outgrowth was on the other hand promoted, and was retained over longer time in culture. Furthermore, the non-glial-associated nerve fibers were found to target the fetal frontal cortex. Different developmental stages were shown to promote and affect the outgrowths differently. Taken together, these data indicate and state the importance of astrocytes and growth factors for neuronal nerve fiber formation and guidance. It also stresses the importance of fetal donor age at the time for transplantation. The fourth and fifth studies focus on L-DOPA dynamics and utilize in vivo chronoamperometry. In study four, 6-OHDA dopamine-depleted rats were exposed to chronic L-DOPA treatment and then rated as dyskinetic or non-dyskinetic. The electrochemical recordings demonstrated reduced KCl-evoked release in the intact striatum after chronic L-DOPA treatment. Time for maximal dopamine concentration after L-DOPA administration was found to be shorter in dyskinetic animals than in non-dyskinetic animals. The serotonergic nerve fiber content in the striatum was evaluated and brains from dyskinetic animals were found to exhibit significantly higher nerve fiber density compared to non-dyskinetic animals. Furthermore, the mechanisms behind the conversion of L-DOPA to dopamine in 6-OHDA dopamine-depleted rats were studied. Local administration of L-DOPA in the striatum increased the KCl-evoked dopamine release in the intact striatum. Acute application of L-DOPA resulted sometimes in a rapid conversion to dopamine, probably without vesicle packaging. This type of direct conversion is presumably occurring in non-neuronal tissue. Furthermore, KCl-evoked dopamine releases were present upon local application of L-DOPA in the dopamine-depleted striatum, suggesting that the conversion to dopamine took place elsewhere, than in dopaminergic nerve fibers. In conclusion, these studies state the importance of astrocytes for neuronal nerve fiber formation and elucidate the complexity of L-DOPA conversion in the brain.
745

Positron Emission Tomography (PET) Studies in Anxiety Disorders

Michelgård Palmquist, Åsa January 2010 (has links)
Anxiety disorders are very common and the primary feature is abnormal or inappropriate anxiety. Fear and anxiety is often mediated by the amygdala, a brain structure rich in substance P (SP) and neurokinin 1 (NK1) receptors. To learn more about how the human amygdala is modulated by fear and anxiety in event-triggered anxiety disorders and to investigate if the SP/NK1 receptor system is affected, regional cerebral blood flow (rCBF) ([15O]-water; Study I and II) and the SP/NK1 receptor system ([11C]GR205171; Study III and IV) were studied with positron emission tomography (PET). In Study I we investigated the neural correlates of affective startle modulation in persons with specific phobia by measuring rCBF during exposure to fearful and non-fearful pictures, paired and unpaired with acoustic startle stimuli. Fear-potentiated startle was associated with activation of the affective part of the anterior cingulate cortex and the left amygdaloid–hippocampal area. In Study II short-term drug treatment effects on rCBF in patients diagnosed with social phobia was evaluated, comparing the NK1 receptor antagonist GR205171 to the selective serotonin reuptake inhibitor citalopram and placebo. Social anxiety and neural activity in the medial temporal lobe including the amygdala was significantly reduced by both drugs but not placebo. In Study III we investigated if activity in the SP/NK1 receptor system in the amygdala would be affected by fear provocation in individuals with specific snake or spider phobia. Fear provocation was associated with a decreased uptake of the NK1 antagonist [11C]GR205171 in the amygdala, possibly explained by an increase in endogenous SP release occupying the NK1 receptors. Study IV was conducted to explore the resting state NK1 receptor availability in PTSD patients as compared to healthy controls. Increased resting state binding of the tracer [11C]GR205171 in the amygdala of patients with PTSD suggested an increased amount of available receptors. In summary, fear and fear-potentiated startle modulates the human amygdala, possibly through the SP/NK1 receptor system.
746

Brain Basis of the Placebo Effect: A Proposed Integrative Model Implicating the Rostral Anterior Cingulate

Belanger, Annie 01 April 2013 (has links)
How is the brain capable of mediating pain relief via the mind alone? Placebo analgesia is just such a case, wherein an inert substance yields relief from a number of pain inducing stimuli. Scholars typically separate several factors thought to contribute to the placebo effect into psychological and neurobiological influences. Psychological mechanisms include expectation and conditioning of analgesic effects, while neurobiological mechanisms implicate the opioidergic descending pain system. The current paper proposes an integrative model in which the rostral anterior cingulate cortex (rACC), implicated in cognitive-affective modulation, receives goal-directed input (i.e., expected pain relief) from the prefrontal cortex. As the rACC processes the cognitive difference between expected and actual pain, it recruits a critical descending pain pathway by means of modulating the periaqueductal gray area (PAG). The PAG is a key relay station that connects to other endogenous subsystems of opioidergic pain relief. Whether the rACC and its connection to the PAG are necessary for the placebo effect is a question future research will have to address.
747

Modifications à long terme des systèmes noradrénergique et sérotoninergique dans la sensibilisation comportementale induite par l'éthanol et l'amphétamine

Doucet, Emilie 24 October 2012 (has links) (PDF)
Notre équipe étudie les modifications neurobiologiques induites par les drogues d'abus en s'appuyant sur le modèle de la sensibilisation comportementale. Celui-ci correspond à l'augmentation de l'activité locomotrice chez le rongeur à la suite d'injections répétées de la même dose de drogue. Nous avons montré que, pour toutes les classes de drogues, ce phénomène s'accompagne d'une sensibilisation des systèmes sérotoninergique et noradrénergique. Au cours de ma thèse, j'ai approfondi, dans un premier temps, les mécanismes par lesquels l'éthanol sensibilise le système noradrénergique. Nos études ont montré que le système opioïde est indispensable au développement de cette sensibilisation. En effet, le blocage des récepteurs µ-opioïdes par le naltrexone, avant les injections d'éthanol, empêche le développement de la sensibilisation comportementale. De plus, chez les souris n'exprimant plus ces récepteurs, les injections répétées d'éthanol n'induisent plus de sensibilisation comportementale ni de sensibilisation du système noradrénergique. Dans une deuxième partie, nous avons cherché à comprendre comment la sensibilisation noradrénergique et sérotoninergique induite par l'amphétamine peut se maintenir plusieurs mois. L'utilisation de techniques d'électrophysiologie et de micro-dialyse in-vivo nous ont permis de montrer que les rétro-contrôles inhibiteurs noradrénergique et sérotoninergique, respectivement composés des auto-récepteurs α2A-adrénergiques et 5-HT1A, sont altérés chez les souris et les rats sensibilisés à l'amphétamine après un mois de sevrage. Cette désensibilisation est corrélée à une diminution de l'expression des protéines Gαi auxquelles ils sont couplés.
748

Propriétés fonctionnelles des réseaux et des neurones corticaux chez l'homme et l'animal atteints d'épilepsie-absence : études électrophysiologiques in vivo

Chipaux, Mathilde 14 November 2012 (has links) (PDF)
L'épilepsie-absence est un syndrome épileptique dont le principal symptôme est une altération transitoire de la conscience, avec décharges pointes-ondes généralisées, qui ont pour origine un dysfonctionnement dans la boucle cortico-thalamique, et naissant dans une sous-population de neurones pyramidaux localisée dans les couches profondes du cortex somatosensoriel. A l'aide d'enregistrements EEG et intracellulaires in vivo dans un modèle animal: les Genetic Absence Epilepsy Rats from Strasbourg, j'ai examiné comment l'excitation initiale des neurones ictogèniques lors des crises est suivie par une hyperpolarisation synaptique chlore-dépendante, concomitante d'une décharge en bouffées dans les interneurones GABAergiques locaux. Le système GABA exerce un effet strictement inhibiteur et contraint la décharge des neurones ictogéniques dans une fenêtre temporelle étroite. Dans une deuxième étude chez l'homme et chez le GAERS, j'ai exploré comment des informations sensorielles sont traitées au cours des DPO. Chez l'enfant épileptique, des stimulations visuelles résultent en des potentiels évoqués occipitaux, plus amples que chez les sujets non-épileptiques. Des stimulations tactiles chez le GAERS induisent lors des crises des potentiels évoqués dans l'EEG et, dans les neurones pyramidaux sous-jacents, des potentiels synaptiques excitateurs plus amples que dans la condition inter-critique. Les troubles de la conscience lors des absences ne résultent donc pas d'un filtrage des informations sensorielles. L'ensemble des recherches fournit des données nouvelles sur les propriétés fonctionnelles des circuits corticaux exprimant les paroxysmes électriques lors des crises d'absence
749

Contrôle cortico-spinal à partir des aires motrices et pré-motrices impliquant le système propriospinal cervical chez l'Homme

Giboin, Louis-Solal 25 September 2012 (has links) (PDF)
Les neurones propriospinaux C3-C4, situés au niveau des cervicales C3-C4, sont connectés de façon excitatrice ou inhibitrice aux motoneurones des membres supérieurs. Ils reçoivent des signaux périphériques et descendants, communiquent avec de multiples interneurones de la moelle et envoient une copie de leurs efférences au cervelet. Les neurones propriospinaux excitateurs sont sous le contrôle d'interneurones inhibiteurs. Les neurones propriospinaux pourraient servir à assister les commandes motrices provenant de structures supérieures, ainsi que l'initiation et la terminaison du mouvement. Des études comportementales chez l'animal ont montré que ce système influence particulièrement les mouvements d'atteinte de cible visuellement guidés du membre antérieur (reaching), ainsi que des mouvements de préhension demandant de la dextérité (precision grip). Le but de cette thèse est de confirmer le rôle du système propriospinal dans la transmission de la commande motrice du bras chez l'Homme. Ce travail a été divisé en deux parties. Dans la première partie, nous avons étudié les effets d'une activation du système propriospinal sur la contraction d'un muscle fléchisseur du poignet (FCR) au cours de tâches dynamiques et visuo-guidées du bras et de la main (reach to grasp et reach to point). Nous avons activé les neurones propriospinaux à l'aide de stimulations magnétiques transcraniennes (TMS) et de stimulations électriques du nerf ulnaire, pour en observer les effets sur la contraction musculaire du FCR au cours des différentes tâches. Nous avons montré que le système propriospinal facilitait la contraction du FCR lors du reach to grasp mais pas lors du reach to point. Nous avons aussi montré que durant le reach to grasp, la facilitation propriospinale n'avait lieu que durant la phase de reaching mais pas pendant la phase de grasping. En augmentant l'intensité de stimulation du nerf ulnaire, la facilitation disparaissait. Nous avons émis l'hypothèse que cette différence de facilitation propriospinale entre les différentes tâches et entre les différentes phases du mouvement soit due à une différence de retours proprioceptifs ainsi qu'à une différence de commandes descendantes. Nous avons suggéré que le contrôle des neurones propriospinaux diffère selon que la tâche soit statique (levée d'inhibition feedback) ou dynamique (renforcement de la commande descendante sur les neurones propriospinaux). Nous avons proposé que le système propriospinal soit un élément important pour l'expression de la dextérité en aidant notamment la stabilisation du bras. La seconde partie consistait à mettre en évidence l'existence d'une relation entre les neurones propriospinaux inhibiteurs et le cortex moteur primaire (M1) et le cortex pré-moteur ventral (PMv). Pour cela, nous avons réalisé des expériences de convergence de volées sur les neurones propriospinaux inhibiteurs à l'aide de stimulations électriques du nerf médian et de TMS appliquée sur M1 ou PMv. Nous avons réussi à démontrer l'existence d'une interaction entre PMv et les neurones propriospinaux inhibiteurs, mais pas entre ces neurones et M1. Cette interaction pourrait se faire par des projections cortico-spinales issues de PMv ou en passant par M1. Nous avons donc inhibé transitoirement M1 par un traitement de double continuous theta burst tout en testant les interactions entre PMv et les neurones propriospinaux inhibiteurs. Les données préliminaires montrent que l'interaction avec PMv subsiste toujours : il est possible que des projections cortico-spinales issues du PMv projette (directement ou indirectement) sur les neurones propriospinaux inhibiteurs.
750

Caractérisation multiparamétrique des neurones du hilus du gyrus denté chez la souris

Leclerc, Clémence 12 October 2012 (has links) (PDF)
Dans le hilus du gyrus denté de l'hippocampe, les cellules moussues excitatrices et les interneurones GABAergiques constituent des acteurs clés du réseau. Cependant, en raison en partie de leur grande diversité, la fonction des interneurones GABAergiques du hilus dans la physiologie du gyrus denté reste peu détaillée. Nous avons utilisé des souris transgéniques GAD67-GFP, exprimant la GFP sous le contrôle du promoteur de la GAD67, et évalué les densités de neurones GABAergiques marqués pour la Calretinine (CR), Parvalbumine (PV), Somatostatine (SOM), Neuropeptide Y (NPY) et l'oxyde nitrique synthase (NOS-1) dans le hilus et la couche granulaire. Pour mieux caractériser les différentes populations d'interneurones, nous avons caractérisé les propriétés de 123 neurones en utilisant la technique de RT-PCR sur cellule unique sur des tranches de cerveaux de souris C57Bl6 âgées de 2 à 3 mois. Une analyse non supervisée en clusters basée sur 18 paramètres électrophysiologiques et 7 paramètres moléculaires a clairement mis en évidence un cluster de cellules moussues excitatrices (n=67) et 3 clusters de cellules GABAergiques (n=56). Les deux premiers clusters d'interneurones GABAergiques comprennent des neurones (n=18 et n=16) qui co-expriment le NPY et la SOM mais se différencient clairement par leurs propriétés élcetrophysiologiques. Le troisième cluster d'interneurones comprend des neurones à décharge rapide exprimant soit la PV (n=9) soit la NOS-1 (n=13). Cette caractérisation multiparamétrique supporte l'existence de classes fonctionnelles distinctes parmi les interneurones GABAergiques du gyrus denté

Page generated in 0.0398 seconds