• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 32
  • 21
  • 19
  • 10
  • 8
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 202
  • 90
  • 52
  • 41
  • 34
  • 33
  • 27
  • 26
  • 25
  • 24
  • 22
  • 18
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Engineering surfaces to direct integrin binding and signaling to promote osteoblast differentiation

Keselowsky, Benjamin George 15 March 2004 (has links)
Cell adhesion to proteins adsorbed onto implanted surfaces is particularly important to host responses in biomedical and tissue engineering applications. Biomaterial surface properties influence the type, quantity and functional presentation (activity) of proteins adsorbed upon contact with physiological fluids, and modulate subsequent cell response. Cell adhesion to extracellular matrix proteins (e.g. fibronectin) is primarily mediated by the integrin family of cell-surface receptors. Integrins not only anchor cells, supporting cell spreading and migration, but also trigger signals that regulate survival, proliferation and differentiation. A fundamental understanding of the adhesive interactions at the biomaterial interface is critical to the rational design of biomaterial surfaces. Using model surfaces of self-assembled monolayers of alkanethiols on gold presenting well-defined surface chemistries (CH3, OH, COOH, NH2), we investigated the effects of surface chemistry on osteoblastic differentiation. We report that surface chemistry effectively modulates fibronectin adsorption, integrin binding, focal adhesion assembly and signaling to direct the osteoblast cellular functions of adhesion strength, gene expression and matrix mineralization. Specifically, surfaces presenting OH and NH2 functionalities provide enhanced functional presentation of adsorbed fibronectin, promoting specificity of integrin binding as well as elevating focal adhesion assembly and signaling. Furthermore, the OH and NH2 surfaces supported elevated levels of osteoblast differentiation as evidenced by osteoblast-specific gene expression and matrix mineralization. These results contribute to the development of design principles for the engineering of surfaces that direct cell adhesion for biomedical and tissue engineering applications. In particular, the understanding provided by this analysis may be useful in the engineering of surface properties for bone tissue repair and regeneration.
42

Mitigating Disuse Bone Loss: Role of Resistance Exercise and Beta-Adrenergic Signaling

Swift, Joshua Michael 2010 May 1900 (has links)
Mechanical loading is an integral component to maintaining bone mass during periods of disuse (i.e. bedrest or casting) or reduced weightbearing activity. Recent data has shown a direct relation between the sympathetic nervous system (SNS) and bone metabolism, however the underlying mechanisms responsible for this relationship are unknown. Furthermore, the role that beta adrenergic stimulation during disuse has on cancellous bone mass and microarchitecture have yet to be defined. The central hypothesis of this research is that resistance exercise and beta-1 adrenergic (Adrb1) receptor agonist administration attenuate disuse-associated reductions in metaphyseal bone during 28 days of rodent hindlimb unloading (HU). Study one determined whether an eccentric- (ECC) or combined isometric+eccentric- (ISO+ECC) based contraction paradigm, engaged during hindlimb unloading (HU), mitigates losses in musculoskeletal mass and strength. Both simulated resistance training (SRT) protocols inhibited reductions in disuse-sensitive cancellous bone mass and maintained plantarflexor muscle strength. Study two determined whether combining the anabolic effects of SRT with the anti-resorptive effects of alendronate (ALEN) during HU positively impacts cancellous bone in an additive or synergistic fashion. ALEN significantly inhibited the anabolic response of cancellous bone to SRT during HU. Study three determined whether an Adrb1 receptor agonist (dobutamine; DOB) mitigates disuse-associated losses in bone mass and formation rate (BFR) during HU. DOB administration significantly blunted reductions in bone mineral density (vBMD) by maintaining cancellous BFR. Study four determined if Adrb1 receptor agonist administration during HU results in an attenuation of osteocyte apoptosis within cancellous bone and whether this relates to a decrease in Bax/Bcl-2 mRNA content ratio (pro- and anti-apoptotic proteins). HU significantly increased cancellous bone osteocyte apoptosis and Bax/Bcl-2 mRNA content ratio, which was reduced by the administration of DOB. Collectively, these are the first studies to assess the role of beta-1 adrenergic signaling and resistance exercise in mitigating disuse-induced loss of cancellous bone mass in rodents. The long term goals of this research are to understand the exact molecular mechanisms by which both Adrb1 signaling and high intensity resistance exercise provide beneficial bone effects during prolonged periods of disuse and to apply these findings to current osteoporosis research.
43

The mechanism of Dexamethasone- and Pioglitazone-Induced Adipogenesis in Bone Marrow Stromal Cell: studies on the differentiation of osteoblast and the mechanism of osteoporosis

Hung, Shao-Hung 13 February 2008 (has links)
Osteoporosis is defined as a skeletal disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. Osteoporosis is well known increasing with age. The number and size of marrow adipocytes increase in a linear manner with age. Early histomorphometric observations suggested that the consequence of the adipose replacement of the marrow functional cell population was a cause of osteoporosis. The replacement of functional cells in the marrow by fat cells is common in several pathological study of osteoporosis. All these evidences clearly demonstrate the reciprocal relationship between osteoblast and adipocyte differentiation. The trans-differentiation of osteoblast to adipocyte is an important mechanism of pathogenesis of osteoporosis. Several reports have indicated that the long-term use of steroids could induce osteonecrosis and osteoporosis. Using a mouse pluripotent mesenchymal cell, D1, as a model, we have demonstrated that dexamethasone, a glucocorticoid, can induce adipogenesis. Peroxisome proliferator-activated receptors-£^ (PPAR£^) plays a critical role in glucose and lipid metabolism, macrophage function, and adipogenesis. It is a nuclear hormone receptor, activated through ligand binding, which results in allosteric changes in receptor conformation, recruitment of coactivators, assembly of a transcriptional complex, there regulates gene expression. Thiazolidinedione (TZD) is one of the agonist of PPAR£^ receptor which has been a medication for diabetic mellitus for years. Treatment with TZDs leads to selective accumulation of subcutaneous adipose tissue. We examined whether adipogenesis induction in D1 cells is initiated by activation of peroxisome proliferator-activated receptor-£^. The results revealed that pioglitazone induces adipogenesis in D1 cells in dosedependent manner and decreases alkaline phosphatase activity in D1 cells. Interestingly, this adipogenesis was not blocked by bisphenol A diglycidyl ether, a peroxisome proliferator-activated receptor-£^ antagonist. A peroxisome proliferator-activated receptor-£^-mediated reporter gene assay showed no response to pioglitazone. We then asked whether dexamethasone-induced adipogenesis can be repressed by mifepristone (RU486), an antagonist of glucocorticoid receptor. The results disclosed that mifepristone cannot counteract dexamethasone-induced adipogenesis, and mifepristone itself induced adipogenesis in D1 cells. Moreover, glucocorticoid receptor-mediated reporter gene assay was not responsive to dexamethasone or mifepristone. We concluded that the adipogenesis induced by pioglitazone and dexamethasone in D1 cells may not occur via a peroxisome proliferator-activated receptor-£^ and glucocorticoid receptor pathway. These results suggested that the adipogenesis induced by glucocorticoids and pioglitazone is directed by a multiple cell signaling pathway. Finally, data from microarray analysis confirmed this adipogenesis pathway, as several adipogenesis-related genes are highly provoked by DEX. We found that the expressions of several adipogenesis-related genes are highly provoked by this agent. Our studies suggest that the adipocyte conversion of bone marrow stromal cells may be the mechanism of bone loss caused by pioglitazone. Considering its widespread clinical use, the detrimental skeletal effects of pioglitazone should be closely monitored.
44

Additives Increasing the Bone-Forming Potential around Calcium Phosphate Cements : Statin, Strontium and Silicon

Montazerolghaem, Maryam January 2015 (has links)
More than one million people worldwide receive some kind of bone graft each year. Grafts are often needed following bone tumour removal or traumatic fractures to fill voids in the bone and to aid in the healing process. The most common method involves bone transplantation, in which bone tissue is taken from one site to fill the defect in another site. The procedure thus involves two surgeries, which leads to an increased risk of complications. New, synthetic graft materials that can be used to fill defects and minimise the complications associated with bone tissue harvesting are therefore necessary. The synthetic materials available today lack the inherent biological factors of bone that stimulate the bone regeneration process. Much of today’s research concerning synthetic bone graft materials aims to solve this issue and researchers have suggested several different strategies. The purpose of this thesis is to improve the performance of acidic calcium phosphate cements, which are materials used as synthetic bone grafts. By combining these cements with drugs or ion additives, local delivery could be achieved with the potential to stimulate bone formation. Two different combinations were attempted in this thesis: cement in combination with simvastatin, or cement in combination with strontium halide salts. Both simvastatin and strontium are known to positively affect bone formation. The efficacy of the cements with the additives was evaluated using different bone cell cultures. The results regarding simvastatin showed that the cement’s mechanical property was not affected upon drug loading, and that the drug was released by a diffusion-controlled mechanism. Moreover, results showed that simvastatin stimulated the bone-forming cells (osteoblasts) to produce more bone tissue, while it inhibited bone-degrading cells (osteoclasts) from degrading the cement. These findings suggest that simvastatin could aid in the bone regeneration process in the local area surrounding the cement. The main purpose of the study using strontium halide salts was to increase the cement’s X-ray contrast, which is a property used to monitor cement during injection. In addition, strontium is believed to positively affect bone cells. The X-ray contrast did increase after the addition of 10 wt% strontium bromide or strontium iodide, while the cell study results did not indicate any significant effects on the bone-forming cells. In the last section of this thesis, zebrafish were used as a model to evaluate bone formation upon treatment with degradation products from synthetic bone grafts. The zebrafish is a small organism with 70 % gene homology to humans; due to its transparency, fast development and ease of handling, it is an interesting model for high-throughput studies. Silicate, which is an ionic degradation product of many different bone substitute materials, was used as a proof-of-concept to visualise bone formation in these fish. The results showed an increased bone formation upon treatment with 0.625 μM silicate ions. The results suggest that this model could be used as a complement to bone cell culture studies in pre-clinical evaluations of the degradation products of bone substitute materials, thus helping researchers to design materials with degradation products that could stimulate bone formation.
45

Interaction of surface energy and microarchitecture in determining cell and tissue response to biomaterials

Zhao, Ge 09 July 2007 (has links)
Biomaterials are widely used in medical practice to help maintain, improve or restore diseased tissues or organs. The successful integration of biomaterials with host tissue depends on substratum surface properties, as well as host tissue quality and its regulatory environment. The overall goal of this dissertation is to incorporate these three factors to achieve better biomaterial-host tissue interactions. Important surface properties include surface topography, surface energy, chemical composition and surface charge. We designed a new titanium (Ti) substratum with modified surface chemical composition by preventing the contamination when in contact with the atmosphere. The new Ti surface has lower carbon contamination and promotes osteoblast differentiation phenotype. The osteogenic effect is synergistic with micrometer and sub-micrometer scale surface structures. To further investigate the effects of bone quality on peri-implant bone formation, we developed a novel mouse femoral medullary bone formation model. This new model will facilitate research evaluating the effects of biomaterial surface treatments in host animals with deficient bone development, including genetically engineered mice. Finally, we studied sexual dimorphism in the response of osteoblasts to systemic regulatory hormones 1¦Á,25-dihydroxyvitamin D3 and 17¦Â-estradiol. The results showed intrinsic differences in male and female osteoblasts with respect to their differentiation and their responses to hormones, suggesting that host chromosomal sex should be considered in biomaterial research. Taken together, this research provides fundamental information on biomaterial surface properties and the regulation of host tissue response, which are important in guiding biomaterial design and evaluation.
46

Investigating the role of ectoderm neural cortex 1 in osteoblast differentiation

Leah Worton Unknown Date (has links)
The need for anabolic therapies to increase bone formation in difficult orthopaedic circumstances and to treat osteoporosis is an area of intense research focus. There is a current interest in the Wnt signalling pathway as a target for such treatment, with accumulating evidence for a role of this pathway in bone formation. Ectoderm Neural Cortex 1 (ENC1) is a Wnt target gene, not previously studied in bone, which was observed in our laboratory to be up-regulated in an anabolic surgical model of bone formation. The involvement of ENC1 in the differentiation of neuronal and adipocytic cells has previously been reported; therefore, this thesis investigates the expression of ENC1 in cells of the bone and the role of ENC1 during osteoblast differentiation. ENC1 transcript expression was localised to osteoblastic, chondrocytic and osteocytic cells in sections of healing fracture callus and normal mouse bone by in situ hybridisation. The expression of ENC1 was confirmed in differentiating primary osteoblasts and in osteoblastic and osteosarcoma cell lines by quantitative real time PCR and western blotting. ENC1 exists as two protein isoforms of 67 and 57kD in size, which are translated from alternatively spliced ENC1 transcripts. Both isoforms of the protein were detected in differentiating cultures of the pre-osteoblast cell line MC3T3-E1. To address the function of ENC1 in osteoblast differentiation, shRNA knockdown of the endogenous transcript was undertaken in MG63 osteosarcoma cells and in the MC3T3-E1 pre-osteoblastic differentiation model. Stable expression of shRNA targeted to both ENC1 spliceforms resulted in reduced accumulation of alkaline phosphatase positive nodules and alkaline phosphatase transcripts in MG63 cell culture. This reduction was not seen with targeted knockdown of 67kD ENC1 alone. Stable tetracycline-inducible shRNA knockdown targeted to both 57 and 67kD ENC1 isoforms in MC3T3-E1 cells resulted in a significant reduction of Alizarin Red S stained mineralised nodules. When expression of 67kD ENC1 alone was reduced, however, a significant increase in MC3T3-E1 nodule formation was observed. This knockdown had no effect on the expression of early genes involved in osteoblast differentiation Runx2 and osterix, but changes in expression of alkaline phosphatase and osteocalcin mRNA mirrored nodule formation. ENC1 is a member of the BTB-Kelch family of proteins. Some members of this family have recently been found to act as substrate adaptors for the E3 ubiquitin ligase, binding to the cullin 3 component of the complex. These adaptor proteins function to bring a substrate protein within the vicinity of the E2 ubiquitin-conjugating enzyme, thus targeting it for ubiquitination and subsequent proteasomal degradation. The ability of ENC1 to interact with cullin 3 was investigated as a possible mechanism by which it may affect a role in osteoblast differentiation. Full length ENC1 showed robust binding to cullin 3 and weak binding was seen between the N-terminally truncated 57kD isoform and cullin 3. ENC1, therefore, may act as a substrate adaptor protein for the cullin 3 based E3 ubiquitin ligase. These data present ENC1 as a novel candidate protein involved in osteoblast differentiation, and suggest the possible involvement of this protein in proteasomal degradation of a substrate involved in osteoblast differentiation. The ENC1 isoforms and the associated functional pathways thus are possible future therapeutic targets to treat bone loss and enhance or accelerate fracture healing.
47

Characterisation and Functional Analysis of Osteal Macrophages: Resident Tissue Macrophages are Intercalated throughout Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro

Ming-Kang Chang Unknown Date (has links)
Resident tissue macrophages are an integral component of many tissues and are important in development, homeostasis and repair. Macrophages are present at sites of both pathologic bone deposition and loss, and can produce osteo-active factors. These observations link macrophages to bone disease, however their contribution to bone dynamics is poorly understood. The molecular and cellular mechanisms driving osteoblast differentiation, matrix deposition and mineralization in vivo are incompletely understood and this deficiency is translated to limited ability to clinically manipulate bone formation. The emerging understanding of the bi-directional interactions between the osseus and immune systems (osteoimmunology) provides a novel avenue to identify mechanisms involved in the regulation of bone formation. In this study, the presence and distribution of macrophages on bone surfaces was systematically analysed and their functional contribution to the bone microenvironment was investigated. Using immunohistochemistry a discrete population of mature resident tissue macrophages was demonstrated throughout resting murine osteal tissues, termed OsteoMacs. Utilising MacGreen mice (csf1r promoter drives eGFP transgene expression in macrophages and other myeloid cells), it was demonstrated that OsteoMacs were intercalated amongst other bone lining cells in both the endosteum and periosteum. OsteoMacs were TRAPneg in situ and had limited osteoclastogenic ability in vitro therefore they are unlikely to serve as the immediate physiologic osteoclast precursors in vivo. Microarray gene expression profiling demonstrated that macrophage gene expression was regulated in response to a characteristic feature of the bone microenvironment, elevated extracellular calcium. Quantitative PCR validated upregulation of sphingosine kinase 1, interleukin 1 receptor antagonise, progressive ankylosis, vascular endothelial growth factor c and dipepetidase 2 mRNA in response to elevated extracellular calcium, suggesting the potential roles of these genes in this unique niche. GNF Symatlas microarray and quantitative PCR demonstrated the expression of macrophage-restricted genes throughout a 21-day primary osteoblast differentiation time course, suggesting co-isolation of OsteoMacs with primary osteoblasts. Flow cytometry analysis confirmed that over all 15.9% of the digested primary calvarial cell preparations were OsteoMacs. Immunocytochemistry demonstrated that OsteoMacs persisted and expanded in standard 21-day osteoblast differentiation assays. Contrary to previous studies, we demonstrated it was the OsteoMacs, and not osteoblasts, within calvarial preparations that selectively detected patho-physiological concentrations of the bacterial product lipopolysaccharide (LPS). A protocol was developed to deplete OsteoMacs from calvarial digests to determine if their presence within these cultures facilitates osteoblast differentiation or function. OsteoMac removal did not affect expression of the early osteoblast differentiation marker genes collagen type I or alkaline phosphatase. However, OsteoMac removal significantly decreased gene expression of the osteoblast mineralisation marker osteocalcin and mineralisation function, assessed by von Kossa staining. Microarray gene expression profiling demonstrated that osteoblast enrichment had a broad impact on transcription within the culture, identifying both candidate OsteoMac marker genes as well as osteoblast expressed genes that are regulated by OsteoMacs. Potential OsteoMac-enriched candidate genes insulin-like growth factor a, dipepetidase 2, glycoprotein NMB, and macrophage expressed gene 1 as well as osteoblast-specific genes bone sialoprotein and thrombospondin 1 were selected based on their potential involvement in osteoblast function. In a transwell co-culture system of enriched osteoblasts and macrophages, it was demonstrated that macrophages were required for osteoblast mineralisation in response to the physiologic remodelling stimulus, elevated extracellular calcium. A blocking soluble receptor strategy provided evidence that this is mediated in a BMP-2 and -4 independent manner. To investigate the relevance of OsteoMacs to bone formation in vivo, immunohistochemistry staining for the mature tissue macrophage marker F4/80 was performed in long bone sections from rapidly growing mice. OsteoMacs were closely associated with areas of bone formation in situ, forming a distinctive canopy structure over mature cuboidal osteoblasts (collagen type I+, osteocalcin+) on endosteal cortical surfaces. Using adapted histomorphometic analysis, we determined that 77 ± 2.1% (n = 7) of the endosteal mature osteoblast surface was covered by the F4/80+ OsteoMac canopy. This observation suggested that OsteoMacs are optimally located to regulate osteoblast function in vivo. In summary, we have demonstrated that OsteoMacs are an integral component of bone lining tissues and play a novel role in bone dynamics through regulating osteoblast function. These observations implicate OsteoMacs, in addition to osteoclasts and osteoblasts, as principal participants in bone dynamics. Further delineation of OsteoMac functions is likely to provide new avenues for treating bone disease and assisting bone repair.
48

Characterisation and Functional Analysis of Osteal Macrophages: Resident Tissue Macrophages are Intercalated throughout Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro

Ming-Kang Chang Unknown Date (has links)
Resident tissue macrophages are an integral component of many tissues and are important in development, homeostasis and repair. Macrophages are present at sites of both pathologic bone deposition and loss, and can produce osteo-active factors. These observations link macrophages to bone disease, however their contribution to bone dynamics is poorly understood. The molecular and cellular mechanisms driving osteoblast differentiation, matrix deposition and mineralization in vivo are incompletely understood and this deficiency is translated to limited ability to clinically manipulate bone formation. The emerging understanding of the bi-directional interactions between the osseus and immune systems (osteoimmunology) provides a novel avenue to identify mechanisms involved in the regulation of bone formation. In this study, the presence and distribution of macrophages on bone surfaces was systematically analysed and their functional contribution to the bone microenvironment was investigated. Using immunohistochemistry a discrete population of mature resident tissue macrophages was demonstrated throughout resting murine osteal tissues, termed OsteoMacs. Utilising MacGreen mice (csf1r promoter drives eGFP transgene expression in macrophages and other myeloid cells), it was demonstrated that OsteoMacs were intercalated amongst other bone lining cells in both the endosteum and periosteum. OsteoMacs were TRAPneg in situ and had limited osteoclastogenic ability in vitro therefore they are unlikely to serve as the immediate physiologic osteoclast precursors in vivo. Microarray gene expression profiling demonstrated that macrophage gene expression was regulated in response to a characteristic feature of the bone microenvironment, elevated extracellular calcium. Quantitative PCR validated upregulation of sphingosine kinase 1, interleukin 1 receptor antagonise, progressive ankylosis, vascular endothelial growth factor c and dipepetidase 2 mRNA in response to elevated extracellular calcium, suggesting the potential roles of these genes in this unique niche. GNF Symatlas microarray and quantitative PCR demonstrated the expression of macrophage-restricted genes throughout a 21-day primary osteoblast differentiation time course, suggesting co-isolation of OsteoMacs with primary osteoblasts. Flow cytometry analysis confirmed that over all 15.9% of the digested primary calvarial cell preparations were OsteoMacs. Immunocytochemistry demonstrated that OsteoMacs persisted and expanded in standard 21-day osteoblast differentiation assays. Contrary to previous studies, we demonstrated it was the OsteoMacs, and not osteoblasts, within calvarial preparations that selectively detected patho-physiological concentrations of the bacterial product lipopolysaccharide (LPS). A protocol was developed to deplete OsteoMacs from calvarial digests to determine if their presence within these cultures facilitates osteoblast differentiation or function. OsteoMac removal did not affect expression of the early osteoblast differentiation marker genes collagen type I or alkaline phosphatase. However, OsteoMac removal significantly decreased gene expression of the osteoblast mineralisation marker osteocalcin and mineralisation function, assessed by von Kossa staining. Microarray gene expression profiling demonstrated that osteoblast enrichment had a broad impact on transcription within the culture, identifying both candidate OsteoMac marker genes as well as osteoblast expressed genes that are regulated by OsteoMacs. Potential OsteoMac-enriched candidate genes insulin-like growth factor a, dipepetidase 2, glycoprotein NMB, and macrophage expressed gene 1 as well as osteoblast-specific genes bone sialoprotein and thrombospondin 1 were selected based on their potential involvement in osteoblast function. In a transwell co-culture system of enriched osteoblasts and macrophages, it was demonstrated that macrophages were required for osteoblast mineralisation in response to the physiologic remodelling stimulus, elevated extracellular calcium. A blocking soluble receptor strategy provided evidence that this is mediated in a BMP-2 and -4 independent manner. To investigate the relevance of OsteoMacs to bone formation in vivo, immunohistochemistry staining for the mature tissue macrophage marker F4/80 was performed in long bone sections from rapidly growing mice. OsteoMacs were closely associated with areas of bone formation in situ, forming a distinctive canopy structure over mature cuboidal osteoblasts (collagen type I+, osteocalcin+) on endosteal cortical surfaces. Using adapted histomorphometic analysis, we determined that 77 ± 2.1% (n = 7) of the endosteal mature osteoblast surface was covered by the F4/80+ OsteoMac canopy. This observation suggested that OsteoMacs are optimally located to regulate osteoblast function in vivo. In summary, we have demonstrated that OsteoMacs are an integral component of bone lining tissues and play a novel role in bone dynamics through regulating osteoblast function. These observations implicate OsteoMacs, in addition to osteoclasts and osteoblasts, as principal participants in bone dynamics. Further delineation of OsteoMac functions is likely to provide new avenues for treating bone disease and assisting bone repair.
49

Relevance of HIV infection to osteoblast-T cell crosstalk

Harris, Ariana Darcy 22 January 2016 (has links)
With the development of Highly Active Anti-Retroviral Therapy (HAART), Human Immunodeficiency Virus (HIV) infection has evolved from a fatal disease to a chronic condition with increased risk for non-infectious comorbidities, including reduced bone density. Bone density is maintained through the coupled activities of osteoblast matrix deposition and osteoclast resorption; while uncoupling this process can result in bone loss and increased fracture risk. CD4+ T cells are critical in regulating the activity of these cells. Relevant to this thesis, studies have shown that HAART treated patients experience higher levels of immune activation; possibly contributing to the observed bone loss. If osteoimmune dysregulation does occur, there is a need to develop therapeutics that target this process, especially in the context of HIV infection. To evaluate osteoblast differentiation, we developed a high-throughput screening method to identify osteo-regulatory compounds. By screening over 5,000 compounds, we identified 18 that robustly induced osteoblast differentiation, using a mouse mesenchymal stem cell. We validated two of these compounds, rapamycin and FK-506, which are known immunosuppressants. Secondly, we addressed the role of activated CD4+T cells and HIV-infected T cells in osteogenesis. We found that supernatants from activated T cells potently inhibit osteoblast differentiation. However, when osteoblasts were co-cultured with HIV-infected T cells, differentiation was inhibited regardless of activation status, suggesting intrinsic differences between HIV infected and uninfected T cells. Finally, to prevent the inhibition of osteogenesis by activated T cells, we evaluated rapamycin, our pro-osteogenic and T cell activation antagonist, as well as the novel compound JQ1, an inflammatory inhibitor that targets bromodomain-containing proteins. Both rapamycin and JQ1 efficiently blocked the cytotoxic effects of supernatants from non-infected activated T cells on osteoblasts, whereas only rapamycin prevented inhibition in the co-culture model. In contrast, neither rapamycin nor JQ1 were able to prevent inhibition by HIV infected, activated T cells. This suggests that HIV exacerbates the negative effects of T cell activation on osteoblastogenesis. These data support a mechanism for HIV infection and T cell activation mediating bone loss.
50

Regulation of osteoclast differentiation and activation in response to environmental stimuli

Liu, Haoming 13 July 2017 (has links)
Bone is a biomaterial composed of organic and inorganic molecules that are continuously remodeled to preserve structural integrity and allow adaptation to stress. Two major types of cells are responsible for this process: the osteoblast that synthesizes the bone and the osteoclast that resorbs the bone. A delicate balance between the function of these two cell types is required to maintain proper bone health and body homeostasis. Three independent projects were conducted to investigate the functions of osteoclasts in response to manipulations of their environment. The differentiation and activation of osteoclasts depends largely on cell-cell communication and integration of signals such as stress and metabolic status. The canonical pathway of osteoclast differentiation is driven by receptor activator of NFKB ligand (RANKL), a cytokine produced in large part by cells of the osteoblast lineage. In inflammatory states, RANKL is also made by T cells and synovial cells in the joint. In addition to altering RANKL, inflammation may enhance osteoclast formation through various other cytokines. In project one, we examined the effect of inflammatory cytokine interleukin (IL)-X in a mouse inflammatory arthritis model and found that it is not required for osteoclast activity. Previous studies have reported that other inflammatory cytokines, including as TNF and IL-6 are able to induce osteoclast differentiation in mice, in addition to the RANKL pathway. Project two investigates whether these cytokines could have the same function in humans. In addition to inflammatory cytokines, osteoclasts have been shown to respond to extracellular stimuli such as stress and metabolic status. Factors responsible for integrating these signals, TSC2 and the mTORC1 complex, were investigated for their role in osteoclast activity, regulation of communication between osteoclasts and osteoblasts, and subsequent formation of a high bone mass phenotype. All three projects have clinical correlations in human. Studying the effects of inflammatory cytokines could reveal mechanisms and strategies for prevention of erosions in rheumatoid arthritis and other inflammatory arthritidies. Heterozygous mice for the Tsc2 gene can be used as a mouse model for diseases including tuberous sclerosis complex and Paget’s disease. Moreover, understanding the role of mTORC1 complex activity in regulating bone mass could shed light on the potential effect of long-term rapamycin treatment for patients. As demonstrated through these projects, bone is highly dynamic and regulated by numerous physiological processes.

Page generated in 0.0591 seconds