• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 32
  • 21
  • 19
  • 10
  • 8
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 202
  • 90
  • 52
  • 41
  • 34
  • 33
  • 27
  • 26
  • 25
  • 24
  • 22
  • 18
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The Effects of Polyelectrolytic Agents on the Viability, Phenotype, and Mineralization of Osteoblast-like Cells

Dziak, Katherine L. January 2005 (has links)
No description available.
62

CONNECTIVE TISSUE GROWTH FACTOR (CTGF/CCN2) REGULATES OSTEOBLAST CYTOSKELETAL REORGANIZATION AND MOTILITY AND ENHANCES DIFFERENTIATION VIA BINDING TO INTEGRIN RECEPTORS AND ACTIVATION OF DOWNSTREAM SIGNALINGS

Hendesi, Honey January 2014 (has links)
Connective Tissue Growth Factor (CTGF) is a matricellular protein that has been shown to mediate cell adhesion, and as a consequence, it regulates cell proliferation, migration, differentiation and gene transcription. Although previous in vivo and in vitro studies supported the anabolic role of CTGF in skeletogenesis, to date mechanisms of this effect remain unknown. So far, no specific receptor has been identified for CTGF, although previous studies have shown that integrins can serve as functional signaling receptors for CTGF. The CTGF-integrin interaction initiates intracellular signaling cascades that ultimately regulate cell cytoskeleton reorganization, gene transcription and cell function. To study the effect of CTGF on osteoblasts, we first conducted adhesion assays using the MC3T3-E1 osteoblastic cell line. We confirmed that osteoblasts adhere to rCTGF in a concentration-dependent manner and we showed this adhesion has characteristics of integrin mediated adhesions. Next, we used an array of blocking antibodies directed against the individual alpha and beta; integrin subunits that are known to be expressed in osteoblasts. Significant decreases in cell adhesion were observed upon treatment with anti-alpha-v or anti-beta1 blocking antibodies. Subsequent coimmunoprecipitation analyses demonstrated that CTGF interacts with alpha-v and beta1 integrins in osteoblasts. Furthermore, we showed that the specificity of this CTGF-integrin interaction occurs in the C-terminal domain (fourth module) of CTGF. The immunefluorescence staining of cells cultured on substrates of rCTGF, fibronectin (positive control) or BSA (negative control) demonstrated that osteoblast adhesion to rCTGF results in actin cytoskeleton reorganization, focal adhesion formation, enhanced cell spreading and Rac activation. These series of events are necessary for proper cell-matrix interaction and integrins' downstream signaling initiation. Next, through alkaline phosphatase (ALP) staining and activity assays, as well as Alizarin red staining, we demonstrated that osteoblast attachment to CTGF matrix enhances cell maturation, bone nodule formation and matrix mineralization. To investigate whether the effect of CTGF on osteoblast differentiation involves activation of specific signaling molecules, we performed Western blot and chromatin immunoprecipitation (ChIP) assays. Osteoblasts cultured on rCTGF expressed higher levels of both total and phosphorylated forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) compared to the cells cultured on BSA. In addition, these osteoblasts showed an increase in runt-related transcription factor 2 (Runx2) binding to the osteocalcin gene promoter compared to the negative control. These experiments confirmed CTGF's effect on enhancing osteoblast differentiation through regulation of important signaling molecules. In another series of experiments, we used primary osteoblasts isolated from CTGF KO mice, their WT littermates, or WT cells infected to overexpress (OE) CTGF to study the effect of different levels of endogenous CTGF on osteoblast cytoskeleton reorganization and motility. Our assays showed enhanced cell adhesion, spreading and Rac expression in CTGF OE osteoblasts, while in CTGF KO osteoblasts, cell adhesion, spreading and Rac expression were significantly decreased. In contrast, CTGF OE osteoblasts that showed high adhesion and spreading, exhibited diminished cell motility and low levels of RhoA expression, while KO cells migrated quickly and expressed high levels of RhoA. Together, these experiments establish CTGF as an adhesion protein for osteoblasts; they demonstrate that the alpha-v beta1 integrin is a functional signaling receptor for CTGF; they confirm that osteoblast differentiation is enhanced when cultured on CTGF matrix through activation of regulatory signaling molecules; and finally, these experiments establish a role for CTGF in the regulation of small RhoGTPases expression, which in turn implies a significant role for CTGF in cell cytoskeleton reorganization and motility. / Cell Biology
63

Osteoblast Response to Zirconia-Hybridized Pyrophosphate Stabilized Amorphous Calcium Phosphate

Whited, Bryce Matthew 22 June 2005 (has links)
Biodegradable polyesters, such as poly(DL-lactic-co-glycolic acid) (PLGA), have been used to fabricate porous bone scaffolds to support bone tissue development. These scaffolds allow for cell seeding, attachment, growth and extracellular matrix production in vitro and are replaced by new bone tissue when implanted into bone sites in vivo. Hydroxyapatite (HAP) and μ-tricalcium phosphate (μ-TCP) ceramics have been incorporated into PLGA bone scaffolds and have been shown to increase their osteoconductivity (support cell attachment). Although HAP, μ-TCP, and biodegradable polyesters are osteoconductive, there is no evidence that these scaffold materials are osteoinductive (support cell differentiation). Calcium and phosphate ions, in contrast, have been postulated to be osteogenic factors that enhance osteoblast differentiation and mineralization. Recently, a zirconia-hybridized pyrophosphate stabilized amorphous calcium phosphate (Zr-ACP) has been synthesized which permits controlled release of calcium and phosphate ions and thus is hypothesized to be osteoinductive. Incorporation of Zr-ACP into a highly porous poly(DL lactic-co-glycolic acid) (PLGA) scaffold could potentially increase the osteoinductivity of the scaffold and therefore promote osteogenesis when implanted in vivo. To determine the osteoinductivity of Zr-ACP, a MC3T3-E1 mouse calvarial-derived osteoprogenitor cell line was used to measure cell response to Zr-ACP. To accomplish this objective, Zr-ACP was added to cell culture at different stages in cell maturation (days 0, 4 and 11). DNA synthesis, alkaline phosphatase (ALP) activity, osteopontin synthesis and collagen synthesis were determined. Results indicate that culture in the presence of Zr-ACP significantly increased cell proliferation, ALP activity and osteopontin synthesis but not collagen synthesis. To determine the feasibility of incorporating Zr-ACP into a PLGA scaffold, PLGA/Zr-ACP composite foams (5% or 10% (w/v) polymer:solvent with 25 wt% or 50 wt% Zr-ACP) were fabricated using a thermal phase inversion technique. Scanning electron microscopy revealed a highly porous structure with pores ranging in size from a few microns to about 100 μm. The amorphous structure of the Zr-ACP was maintained during composite fabrication as confirmed by X-ray diffraction measurements. Composite scaffolds also showed significantly greater compressive yield strengths and moduli as compared to pure polymer scaffolds. The results of this study indicate that Zr-ACP enhances the osteoblastic phenotype of MC3T3-E1 cells in vitro and can be incorporated into a porous PLGA scaffold. Porous PLGA/Zr-ACP composites are promising for use as bone scaffolds to heal bone defects. / Master of Science
64

Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium

Karbanová, Jana, Soukup, Tomáš, Suchánek, Jakub, Pytlík, Robert, Corbeil, Denis, Mokrý, Jaroslav 04 March 2014 (has links) (PDF)
We isolated and expanded stem cells from dental pulp from extracted third molars using an innovative culture method consisting of low serum-containing medium supplemented with epidermal growth factor and platelet-derived growth factor BB. We evaluated the differentiation potential of these cells when they were growing either adherently or as micromass/spheroid cultures in various media. Undifferentiated and differentiated cells were analyzed by flow cytometry, immunocytochemistry and immunoblotting. The flow cytometry results showed that the dental pulp stem cells (DPSCs) were positive for mesenchymal stromal cell markers, but negative for hematopoietic markers. Immunocytochemical and/or immunoblotting analyses revealed the expression of numerous stem cell markers, including nanog, Sox2, nestin, Musashi-1 and nucleostemin, whereas they were negative for markers associated with differentiated neural, vascular and hepatic cells. Surprisingly, the cells were only slightly positive for α-smooth muscle actin, and a heterogeneous expression of CD146 was observed. When cultured in osteogenic media, they expressed osteonectin, osteopontin and procollagen I, and in micromass cultures, they produced collagen I. DPSCs cultured in TGF-β1/3-supplemented media produced extracellular matrix typical of cartilaginous tissue. The addition of vascular endothelial growth factor to serum-free media resulted in the expression of endothelial markers. Interestingly, when cultured in neurogenic media, DPSCs exhibited de novo or upregulated markers of undifferentiated and differentiated neural cells. Collectively, our data show that DPSCs are self-renewing and able to express markers of bone, cartilage, vascular and neural tissues, suggesting their multipotential capacity. Their easy accessibility makes these cells a suitable source of somatic stem cells for tissue engineering. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
65

Characterization of Dental Pulp Stem Cells from Impacted Third Molars Cultured in Low Serum-Containing Medium

Karbanová, Jana, Soukup, Tomáš, Suchánek, Jakub, Pytlík, Robert, Corbeil, Denis, Mokrý, Jaroslav January 2011 (has links)
We isolated and expanded stem cells from dental pulp from extracted third molars using an innovative culture method consisting of low serum-containing medium supplemented with epidermal growth factor and platelet-derived growth factor BB. We evaluated the differentiation potential of these cells when they were growing either adherently or as micromass/spheroid cultures in various media. Undifferentiated and differentiated cells were analyzed by flow cytometry, immunocytochemistry and immunoblotting. The flow cytometry results showed that the dental pulp stem cells (DPSCs) were positive for mesenchymal stromal cell markers, but negative for hematopoietic markers. Immunocytochemical and/or immunoblotting analyses revealed the expression of numerous stem cell markers, including nanog, Sox2, nestin, Musashi-1 and nucleostemin, whereas they were negative for markers associated with differentiated neural, vascular and hepatic cells. Surprisingly, the cells were only slightly positive for α-smooth muscle actin, and a heterogeneous expression of CD146 was observed. When cultured in osteogenic media, they expressed osteonectin, osteopontin and procollagen I, and in micromass cultures, they produced collagen I. DPSCs cultured in TGF-β1/3-supplemented media produced extracellular matrix typical of cartilaginous tissue. The addition of vascular endothelial growth factor to serum-free media resulted in the expression of endothelial markers. Interestingly, when cultured in neurogenic media, DPSCs exhibited de novo or upregulated markers of undifferentiated and differentiated neural cells. Collectively, our data show that DPSCs are self-renewing and able to express markers of bone, cartilage, vascular and neural tissues, suggesting their multipotential capacity. Their easy accessibility makes these cells a suitable source of somatic stem cells for tissue engineering. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
66

The role of the FACT complex in differentiation of multipotent stem cells

Hossan, Tareq 23 May 2016 (has links)
No description available.
67

Laser surface treatment of nylon 6,6 for the modification of wettability characteristics and subsequent enhancement of osteoblast cell response

Waugh, David G. January 2010 (has links)
The control of cell adhesion to synthetic polymers is a key factor in tissue engineering, resting on the ability to direct specific cell types to adhere and proliferate in order to stimulate tissue reconstruction. But often the surface properties are compromised for the sake of the bulk properties, leading to surfaces that do not support sufficiently the level of bioactivity required and accordingly the polymeric biomaterial will fail clinically. Laser treatment offers a unique means of enhancing the osteoblast cell response of the surface of a polymeric biomaterial, whilst keeping the already sufficient bulk properties intact. To this end, infra-red (IR) and ultraviolet (UV) lasers have been employed to modify the wettability characteristics of nylon 6,6, as wetting is often the primary factor dictating the adhesion and bonding potential of materials, as a route to enhancing the surface in terms of osteoblast cell response. What is more, modifying wettability characteristics in this way is a highly attractive means of estimating the biofunctionality of a polymer. IR (CO2) and UV (F2 and KrF excimer) lasers were employed to carry out two different processes: laser whole area irradiative processing and laser-induced patterning. With both CO2 and the excimer lasers changes in the wettability characteristics could be effected with subsequent enhancement of osteoblast cell response. This was also the case with both laser-induced patterning and laser whole area irradiative processing. Essentially, an approach has been established whereby the osteoblast cell response on the surfaces of laser treated nylon 6,6 can be predicted through the laser-induced wettability characteristics modification, particularly for the laser whole area irradiative processed nylon 6,6. This ultimately allows one to determine the osteoblast cell response of the laser surface treated nylon 6,6 surfaces directly from the laser operating parameters. In concurrence with established wetting theory the laser whole area irradiative processing of the nylon 6,6 surfaces caused increased surface roughness, increased surface oxygen content, increased polar component, γP , and increased total surface energy, γT ; thereby generating surfaces displaying reduced contact angle, θ, making the nylon 6,6 surfaces more hydrophilic. The laser-induced patterned samples differed from current theory insofar as the nylon 6,6 surfaces became less hydrophilic due to an increase in θ despite an increase in surface roughness, an increase in surface oxygen content, an increase in γP and an increase in γT . This phenomena can be explained by the transition in wetting regimes from a Wenzel regime to a mixed-state wetting regime. Nevertheless, collation of the wettability characteristics results revealed that θ was a strong correlative decreasing function of both γP and γT , indicating that surface energy played a large role in determining the wetting nature of the nylon 6,6. It was found that for all laser whole area irradiative processed nylon 6,6 surfaces the osteoblast cell response was an increasing correlative and therefore predictive function of θ and was a decreasing function of γP . To an extent, the surface oxygen content and surface roughness could be used indirectly to foretell the osteoblast cell response of the nylon 6,6 surfaces. This is on account of the CO2 and KrF excimer laser whole area irradiative processing bringing about increased surface toxicity, which above a certain level hindered the osteoblast cell response. For the laser-induced patterned nylon 6,6 samples there did not appear to be any particular correlative trend between the modified surface parameters and osteoblast cell response. This can be accounted for by the transition in wetting regimes. Another important factor is that cell morphologies were modulated over all samples which suggests that varying surface parameters on account of laser surface treatment gave rise to variations in cell signaling. It was determined that θ, γP and γT all had very strong correlative relationships with the cytotoxicity. The cytotoxicity reduced upon an increase in θ until a minimum constant was achieved, whereas the cytotoxicity remained constant at low γP and γT until a point at which the cytotoxicity began to increase. These results are noteworthy as they allow one to deduce that, with constant cytotoxicity levels, the osteoblast cell response appeared to be modulated by the wettability characteristics. But once the cytotoxicity increased, the toxicity began to dominate and so negated the identified positive wettability characteristic correlations with osteoblast cell response. Practically, the surface roughness and surface oxygen content could be implemented indirectly to estimate the cytotoxicity. Increase in cytotoxicity was the result of the laser processing with higher fluences generating excessive melting. As a result of this, it is possible to deduce that there was a maximum threshold fluence, beyond which the toxicity of the nylon 6,6 began to dominate, giving rise to a less enhanced osteoblast cell response. On account of the correlative trends which have been identified between the laser surface treatment, wettability characteristics and osteoblast cell response of nylon 6,6 it is likely for one to have the ability to estimate the osteoblast cell response in vitro. This is significant as it indicates that laser surface modification of polymeric materials could have tremendous potential for application within the field of regenerative medicine.
68

The Role of Secreted Phosphoprotein-24 in Osteoblast Differentiation and Matrix Mineralization

Ramage, Samuel 04 December 2007 (has links)
Secreted Phosphoprotein-24 (Spp24) was initially isolated and characterized as a component of bovine cortical bone matrix. Subsequent characterization has shown it is multiply phosphorylated and homologous to cystatin and TGF-β receptor type II. Spp24 is a minor component of the serum fetuin mineral complex that binds calcium-phosphate minerals and prevents their deposition. The TGF-β receptor homology domain binds BMP-2 weakly in vitro and enhances BMP-2’s osteogenic effects in vivo. The ability of Spp24 to affect BMP activity suggests an important role for Spp24 as a native, bioactive componentof bone that regulates bone development. Spp24 was highly up-regulated in rat cortical kidneys following a low calcium diet regime. Tissue distribution of both Spp24 protein and RNA showed that while Spp24 accumulates in bone, a majority is produced at distant sites, namely the liver and kidney. Additionally, Spp24 was present in more tissues than previously believed. Spp24 migrates to a number of different molecular weights, suggesting multiple, alternative posttranslational modifications may generate subtly different forms of the protein. Theexpression of Spp24 in the kidney may be regulated to counteract changes in serum mineral levels. Additionally, homology in the Spp24 sequence suggests that it, like other bone and dentine matrix proteins, may interact with mineral as an important influencer of mineral calcification. Utilizing microarray analysis of primary bone marrow-derived mesenchymal stem cells transduced with Spp24 and control viruses we examined changes elicited by the overexpression of Spp24. A change in overall morphology was observed for cellstransduced with the Spp24 similar to changes described in cells undergoing osteoblasticdifferentiation. Nodule formation was also seen in the Spp24 transduced cells. Microarray results showed key markers of osteoblast differentiation, CBFA1/RUNX2 and osterix(OSX), were not up-regulated although there were distinguishable changes in the gene expression profile of mesenchymal stem cells. The cells appeared to be blocked from differentiation into a number of mesenchymal lineages: adipocytes, myocytes andchondrocytes. The changes appeared to prime cells for signals that activate osteoblastdifferentiation by blocking other pathways and altering internal signaling response pathways to those signals. This document was created in Microsoft Word 2003.
69

Participação de integrinas na diferenciação osteoblástica induzida por superfícies de titânio com nano e microtopografia / Role of integrins on the osteoblast differentiation induced by titanium surfaces with nano and microtopography

Lopes, Helena Bacha 30 November 2018 (has links)
As integrinas constituem uma família de receptores de membrana que tem como função primária a adesão de células a proteínas da matriz extracelular e alguns de seus membros estão envolvidos nos processos de diferenciação osteoblástica e formação óssea, eventos diretamente relacionados à osseointegração de implantes de titânio (Ti). Sabe-se que superfícies de Ti com nano e microtopografia podem favorecer a diferenciação osteoblástica e a mineralização da matriz extracelular. No entanto, os mecanismos celulares envolvidos nesses processos não são completamente entendidos. Neste contexto, os objetivos deste estudo foram: (1) caracterizar as superfícies de Ti com nano (Ti-Nano) e microtopografia (Ti-Micro), (2) investigar a participação da integrina V na diferenciação osteoblástica induzida pelo Ti-Nano e (3) investigar a participação da integrina β3 na diferenciação osteoblástica induzida por Ti-Nano e Ti-Micro. Para isso, discos de Ti-Nano e Ti-Micro foram preparados por ataque ácido com H2SO4/H2O2 ou com HNO3/H2SO4 / HCl, respectivamente, e caracterizados quanto à topografia, rugosidade e composição química de superfície. Discos de Ti usinados foram usados com controle (Ti-Controle) em alguns experimentos. Células-tronco mesenquimais derivadas de medula óssea de ratos foram cultivadas sobre as três superfícies de Ti e foi avaliada a expressão gênica de componentes envolvidos na via de sinalização das integrinas por PCR array. Com base nos resultados do PCR array, as integrinas αV e β3 foram selecionadas e silenciadas por RNA de interferência (shRNA) ou CRISPR/Cas9, respectivamente, em células pré-osteoblásticas da linhagem MC3T3-E1 para investigarmos a participação dessas integrinas na diferenciação osteoblástica induzida por superfícies de Ti com diferentes topografias. Os resultados deste estudo mostraram que os tratamentos empregados foram eficientes para a produção de superfícies de Ti com topografias nas escalas nano e micrométrica. Além disso, foi demonstrado que o maior potencial osteogênico do Ti-Nano se deve, ao menos em parte, à integrina αV, uma vez que seu silenciamento reduziu a diferenciação osteoblástica induzida pela nanotopografia. Por fim, também demonstramos que a via de sinalização ativada pela integrina β3 exerce um papel fundamental no potencial osteogênico do Ti-Nano, mas não do Ti-Micro. O silenciamento da integrina β3 reduziu a diferenciação osteoblástica, concomitantemente com a regulação negativa da expressão de vários componentes das vias de sinalização de Wnt e de BMP, apenas nas células crescidas sobre a nanotopografia. Em conjunto, nossos resultados revelam um novo mecanismo para explicar a maior diferenciação osteoblástica induzida pelo Ti-Nano, que envolve uma complexa rede regulatória ativada pela maior expressão das integrinas αV e β3, esta última gerando ativação da transdução de sinal das vias de Wnt e de BMP / Integrins are a family of membrane receptors that primarily mediate cell adhesion to extracellular matrix proteins and some members are involved in the process of osteoblast differentiation and bone formation, key events of titanium (Ti) implant osseointegration. It is well known that Ti surfaces with nano and microtopography may favor osteoblast differentiation and matrix mineralization. However, the cellular mechanisms involved in this process are not entirely understood. In this context, the aims of this study were: (1) to characterize the Ti surfaces with nano (Ti-Nano) and microtopography (Ti-Micro), (2) to investigate the participation of integrin V on osteoblast differentiation induced by Ti-Nano and (3) to investigate the participation of integrin β3 on osteoblast differentiation induced by Ti-Nano and Ti-Micro. Discs of Ti-Nano and Ti-Micro were prepared with acid etching with H2SO4/H2O2 or with HNO3/H2SO4 / HCl, respectively, and characterized in terms of surface topography, roughness and chemical composition. Machined Ti discs (untreated) were used as control (Ti-Control) in some experiments. Mesenchymal stem cells from rat bone marrow were cultured on Ti discs with the three different surfaces and the gene expression of members of the integrin signaling pathway was evaluated by PCR array. Based on PCR array results, the integrins αV and β3 were selected and silenced using RNA interference (shRNA) or CRISPR-Cas9, respectively, in pre-osteoblastic cell line MC3T3-E1 to investigate the participation of these integrins in osteoblast differentiation induced by Ti with different surface topographies. The results showed that the treatments used were efficient to generate Ti surfaces with topographies at the nano and micrometric scales. We showed that the higher osteogenic potential of Ti-Nano may be, at least in part, due to the integrin &alphaV, since its silencing reduced the osteoblast differentiation induced by nanotopography. We also demonstrated that the signaling pathway triggered by integrin β3 plays a key role in the osteogenic potential of Ti-Nano, but not of Ti-Micro. The silencing of integrin β3 reduced the osteoblast differentiation concomitantly with the negative regulation of the gene expression of several Wnt and BMP signaling components only in cells grown on Ti-Nano. Taken together, our results uncover a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves a complex regulatory network triggered by integrins αV and β3 upregulation, with the integrin β3 activating the Wnt and BMP signal transductions
70

Estudo do efeito de bisfosfonatos nas células clásticas durante a ossificação endocondral do joelho de ratos e em cultura primária: abordagens morfológicas e moleculares. / Study of bisphosphonate effects on clastic cells during endochondral ossification in the rat knee and in primary cultures: morphological and molecular approaches.

Rezende, Eloiza de 06 December 2013 (has links)
Na ossificação endocondral, osteoclastos (Oc) reabsorvem os remanescentes de cartilagem, e osteoblastos (Ob) depositam matriz óssea. Bisfosfonatos (Bps) inibem a ação dos Oc. Foi avaliado o efeito dos Bps alendronato (Aln) e etidronato (Etn) em joelhos de ratos jovens (in vivo) e na cultura primária de Oc (in vitro). O material in vivo foi analisado por MEV, MET e ML (morfologia e histoquímica para TRAP). RNA foi extraído para análise por RT-PRC e proteínas para análise por WB, que também foram extraídos após o tratamento da cultura com Bps. O tratamento com Etn revelou lâmina epifiseal desorganizada com extensa área de cartilagem; a MEV mostrou pouco osso trabecular com lacunas de reabsorção, que não foram observadas com Aln. O Aln revelou numerosos Oc TRAP-positivos latentes, confirmados por MET. In vivo os Bps diminuem a expressão dos genes analisados; In vitro o Aln diminui somente a expressão de Runx2, menos expresso com Etn, assim como Spp1. A expressão proteica variou entre os grupos. Aln é o mais potente em inibir os Oc enquanto o Etn atua sobre os Ob. / In endochondral ossification, clastic cells (Oc) resorb the calcified cartilage, while osteoblasts (Ob) form new bone. Bisphosphonates (Bps) inhibit the action of Oc. The effect of the Bps alendronate (Aln) and etidronate (Etn) on the knees of young rats (in vivo) and in primary cultures of Oc (in vitro) was evaluated. The specimens were analyzed by SEM, TEM, and LM or TRAP histochemistry. RNA was extracted to analysis by RT-PRC and protein to analysis by WB. RNA and protein were also extracted after the treatment of cultures with Bps. Rats treated with Etn exhibited a disorganized epiphyseal plate containing large area of cartilage; SEM showed few bone trabeculae with resorption lacunae, which were not observed in Aln specimens. Aln showed numerous latent Oc by TRAP histochemistry and TEM. In vivo, the Bps decreased the expression of all analyzed genes; in vitro, Aln decreased only the expression of Runx2 as well as SPP1, which expression was less with Etn. Protein expression varied among the groups. Aln is more potent for inhibiting the Oc, while Etn acts on Ob.

Page generated in 0.1349 seconds