• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 246
  • 16
  • 6
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 319
  • 175
  • 154
  • 127
  • 115
  • 111
  • 87
  • 83
  • 77
  • 77
  • 64
  • 60
  • 59
  • 59
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Maskininlärning med konform förutsägelse för prediktiva underhållsuppgifter i industri 4.0 / Machine Learning with Conformal Prediction for Predictive Maintenance tasks in Industry 4.0 : Data-driven Approach

Liu, Shuzhou, Mulahuko, Mpova January 2023 (has links)
This thesis is a cooperation with Knowit, Östrand \& Hansen, and Orkla. It aimed to explore the application of Machine Learning and Deep Learning models with Conformal Prediction for a predictive maintenance situation at Orkla. Predictive maintenance is essential in numerous industrial manufacturing scenarios. It can help to reduce machine downtime, improve equipment reliability, and save unnecessary costs.  In this thesis, various Machine Learning and Deep Learning models, including Decision Tree, Random Forest, Support Vector Regression, Gradient Boosting, and Long short-term memory, are applied to a real-world predictive maintenance dataset. The Orkla dataset was originally planned to use in this thesis project. However, due to some challenges met and time limitations, one NASA C-MAPSS dataset with a similar data structure was chosen to study how Machine Learning models could be applied to predict the remaining useful lifetime (RUL) in manufacturing. Besides, conformal prediction, a recently developed framework to measure the prediction uncertainty of Machine Learning models, is also integrated into the models for more reliable RUL prediction.  The thesis project results show that both the Machine Learning and Deep Learning models with conformal prediction could predict RUL closer to the true RUL while LSTM outperforms the Machine Learning models. Also, the conformal prediction intervals provide informative and reliable information about the uncertainty of the predictions, which can help inform personnel at factories in advance to take necessary maintenance actions.  Overall, this thesis demonstrates the effectiveness of utilizing machine learning and Deep Learning models with Conformal Prediction for predictive maintenance situations. Moreover, based on the modeling results of the NASA dataset, some insights are discussed on how to transfer these experiences into Orkla data for RUL prediction in the future.
252

Knowledge Transfer Applied on an Anomaly Detection Problem Using Financial Data

Natvig, Filip January 2021 (has links)
Anomaly detection in high-dimensional financial transaction data is challenging and resource-intensive, particularly when the dataset is unlabeled. Sometimes, one can alleviate the computational cost and improve the results by utilizing a pre-trained model, provided that the features learned from the pre-training are useful for learning the second task. Investigating this issue was the main purpose of this thesis. More specifically, it was to explore the potential gain of pre-training a detection model on one trader's transaction history and then retraining the model to detect anomalous trades in another trader's transaction history. In the context of transfer learning, the pre-trained and the retrained model are usually referred to as the source model and target model, respectively.  A deep LSTM autoencoder was proposed as the source model due to its advantages when dealing with sequential data, such as financial transaction data. Moreover, to test its anomaly detection ability despite the lack of labeled true anomalies, synthetic anomalies were generated and included in the test set. Various experiments confirmed that the source model learned to detect synthetic anomalies with highly distinctive features. Nevertheless, it is hard to draw any conclusions regarding its anomaly detection performance due to the lack of labeled true anomalies. While the same is true for the target model, it is still possible to achieve the thesis's primary goal by comparing a pre-trained model with an identical untrained model. All in all, the results suggest that transfer learning offers a significant advantage over traditional machine learning in this context.
253

Handling Occlusion using Trajectory Prediction in Autonomous Vehicles / Ocklusionshantering med hjälp av banprediktion för självkörande fordon

Ljung, Mattias, Nagy, Bence January 2022 (has links)
Occlusion is a frequently occuring challenge in vision systems for autonomous driving. The density of objects in the field-of-view of the vehicle may be so high that some objects are only visible intermittently. It is therefore beneficial to investigate ways to predict the paths of objects under occlusion. In this thesis, we investigate whether trajectory prediction methods can be used to solve the occlusion prediction problem. We investigate two different types of approaches, one based on motion models, and one based on machine learning models. Furthermore, we investigate whether these two approaches can be fused to produce an even more reliable model. We evaluate our models on a pedestrian trajectory prediction dataset, an autonomous driving dataset, and a subset of the autonomous driving dataset that only includes validation examples of occlusion. The comparison of our different approaches shows that pure motion model-based methods perform the worst out of the three. On the other hand, machine learning-based models perform better, yet they require additional computing resources for training. Finally, the fused method performs the best on both the driving dataset and the occlusion data. Our results also indicate that trajectory prediction methods, both motion model-based and learning-based ones, can indeed accurately predict the path of occluded objects up to at least 3 seconds in the autonomous driving scenario.
254

Multivariate Time series Forecasting with applied Machine Learning on Electrical signals from High-Voltage Direct Current Equipment - Valve Cooling System

Nilsson, Carolina January 2022 (has links)
In a sustainable society, utilizing intermittent renewable power plants is an important building block for achieving green power production. However, the power production from these sources, e.g., wind farms and solar farms, are often located far away from the place of power consumption, and the electricity generation is affected by the weather conditions in the area. Therefore, there is a challenge in balancing power production and consumption with these sources. The HVDC (High-Voltage Direct Current) technology can be used to efficiently transport electricity over long distances and is a key concept in the utilization of renewable energy sources. However, the HVDC systems are sensitive to environmental effects such as elevated or dropping ambient temperatures, which can cause a forced stop in the system, e.g., when the remaining cooling capacity is low. Therefore, the HVDC systems are built to have a high redundancy to maintain a secure power transmission during seasonal changes.  This thesis aimed to create a forecasting model with applied machine learning that could trend the remaining cooling capacity in an HVDC system, to stay aware of how much remaining cooling capacity there is at different seasons. This can be used to optimize the power transmission during seasons when there is a surplus of cooling capacity. The machine learning pipelines were constructed in Python utilizing Hitachi Energy’s PGML (Power Grid Machine Learning) platform. Two different forecasting models were used: LSTM (Long Short-Term Memory) and XGBoost (eXtreme Gradient Boosting). The models were trained to make a five hour ahead multistep prediction and were validated with several evaluation metrics. The best performing model was the XGBoost model, therefore it was chosen as the final model and was tested on a hold-out data set to estimate the general performance. The final model performed well on the hold-out data set, based on the scores from evaluation metrics. Residual diagnostics were used to improve the models during training and to evaluate the final model. At the end of the discussion in Chapter 5 future improvements were suggested.
255

Forecasting checking account balance : Using supervised machine learning

Dannelind, Martin January 2022 (has links)
The introduction of open banking has made it possible for companies to build the next generation of applications based on transactional data. Enabling economic forecasts which private individuals can use to make responsible financial decisions. This project investigated forecasting account balances using supervised learning. 7 different regression models were run on transactional data from 377 anonymised checking accounts split into subgroups. The results concluded that multivariate XGBoost optimised with feature selection was the best performing forecasting model and the subgroup with recurring income transactions was easiest to forecast. Based on the result from this project it can be concluded that a viable option to forecast account balances is to split the transactional data into subgroups and forecast them separately. Minimising the errors given by certain random, infrequent and large types of transactions.
256

Anomaly detection for non-recurring traffic congestions using Long short-term memory networks (LSTMs) / Avvikelsedetektering för icke återkommande trafikstockningar med hjälp av LSTM-nätverk

Svanberg, John January 2018 (has links)
In this master thesis, we implement a two-step anomaly detection mechanism for non-recurrent traffic congestions with data collected from public transport buses in Stockholm. We investigate the use of machine learning to model time series data with LSTMs and evaluate the results with a baseline prediction model. The anomaly detection algorithm embodies both collective and contextual expressivity, meaning it is capable of findingcollections of delayed buses and also takes the temporality of the data into account. Results show that the anomaly detection performance benefits from the lower prediction errors produced by the LSTM network. The intersection rule significantly decreases the number of false positives while maintaining the true positive rate at a sufficient level. The performance of the anomaly detection algorithm has been found to depend on the road segment it is applied to, some segments have been identified to be particularly hard whereas other have been identified to be easier than others. The performance of the best performing setup of the anomaly detection mechanism had a true positive rate of 84.3 % and a true negative rate of 96.0 %. / I den här masteruppsatsen implementerar vi en tvåstegsalgoritm för avvikelsedetektering för icke återkommande trafikstockningar. Data är insamlad från kollektivtrafikbussarna i Stockholm. Vi undersöker användningen av maskininlärning för att modellerna tidsseriedata med hjälp av LSTM-nätverk och evaluerar sedan dessa resultat med en grundmodell. Avvikelsedetekteringsalgoritmen inkluderar både kollektiv och kontextuell uttrycksfullhet, vilket innebär att kollektiva förseningar kan hittas och att även temporaliteten hos datan beaktas. Resultaten visar att prestandan hos avvikelsedetekteringen förbättras av mindre prediktionsfel genererade av LSTM-nätverket i jämförelse med grundmodellen. En regel för avvikelser baserad på snittet av två andra regler reducerar märkbart antalet falska positiva medan den höll kvar antalet sanna positiva på en tillräckligt hög nivå. Prestandan hos avvikelsedetekteringsalgoritmen har setts bero av vilken vägsträcka den tillämpas på, där några vägsträckor är svårare medan andra är lättare för avvikelsedetekteringen. Den bästa varianten av algoritmen hittade 84.3 % av alla avvikelser och 96.0 % av all avvikelsefri data blev markerad som normal data.
257

Portfolio Performance Optimization Using Multivariate Time Series Volatilities Processed With Deep Layering LSTM Neurons and Markowitz / Portföljprestanda optimering genom multivariata tidsseriers volatiliteter processade genom lager av LSTM neuroner och Markowitz

Andersson, Aron, Mirkhani, Shabnam January 2020 (has links)
The stock market is a non-linear field, but many of the best-known portfolio optimization algorithms are based on linear models. In recent years, the rapid development of machine learning has produced flexible models capable of complex pattern recognition. In this paper, we propose two different methods of portfolio optimization; one based on the development of a multivariate time-dependent neural network,thelongshort-termmemory(LSTM),capable of finding lon gshort-term price trends. The other is the linear Markowitz model, where we add an exponential moving average to the input price data to capture underlying trends. The input data to our neural network are daily prices, volumes and market indicators such as the volatility index (VIX).The output variables are the prices predicted for each asset the following day, which are then further processed to produce metrics such as expected returns, volatilities and prediction error to design a portfolio allocation that optimizes a custom utility function like the Sharpe Ratio. The LSTM model produced a portfolio with a return and risk that was close to the actual market conditions for the date in question, but with a high error value, indicating that our LSTM model is insufficient as a sole forecasting tool. However,the ability to predict upward and downward trends was somewhat better than expected and therefore we conclude that multiple neural network can be used as indicators, each responsible for some specific aspect of what is to be analysed, to draw a conclusion from the result. The findings also suggest that the input data should be more thoroughly considered, as the prediction accuracy is enhanced by the choice of variables and the external information used for training. / Aktiemarknaden är en icke-linjär marknad, men många av de mest kända portföljoptimerings algoritmerna är baserad på linjära modeller. Under de senaste åren har den snabba utvecklingen inom maskininlärning skapat flexibla modeller som kan extrahera information ur komplexa mönster. I det här examensarbetet föreslår vi två sätt att optimera en portfölj, ett där ett neuralt nätverk utvecklas med avseende på multivariata tidsserier och ett annat där vi använder den linjära Markowitz modellen, där vi även lägger ett exponentiellt rörligt medelvärde på prisdatan. Ingångsdatan till vårt neurala nätverk är de dagliga slutpriserna, volymerna och marknadsindikatorer som t.ex. volatilitetsindexet VIX. Utgångsvariablerna kommer vara de predikterade priserna för nästa dag, som sedan bearbetas ytterligare för att producera mätvärden såsom förväntad avkastning, volatilitet och Sharpe ratio. LSTM-modellen producerar en portfölj med avkastning och risk som ligger närmre de verkliga marknadsförhållandena, men däremot gav resultatet ett högt felvärde och det visar att vår LSTM-modell är otillräckligt för att använda som ensamt predikteringssverktyg. Med det sagt så gav det ändå en bättre prediktion när det gäller trender än vad vi antog den skulle göra. Vår slutsats är därför att man bör använda flera neurala nätverk som indikatorer, där var och en är ansvarig för någon specifikt aspekt man vill analysera, och baserat på dessa dra en slutsats. Vårt resultat tyder också på att inmatningsdatan bör övervägas mera noggrant, eftersom predikteringsnoggrannheten.
258

Predicting trajectories of golf balls using recurrent neural networks / Förutspå bollbanan för en golfboll med neurala nätverk

Jansson, Anton January 2017 (has links)
This thesis is concerned with the problem of predicting the remaining part of the trajectory of a golf ball as it travels through the air where only the three-dimensional position of the ball is captured. The approach taken to solve this problem relied on recurrent neural networks in the form of the long short-term memory networks (LSTM). The motivation behind this choice was that this type of networks had led to state-of-the-art performance for similar problems such as predicting the trajectory of pedestrians. The results show that using LSTMs led to an average reduction of 36.6 % of the error in the predicted impact position of the ball, compared to previous methods based on numerical simulations of a physical model, when the model was evaluated on the same driving range that it was trained on. Evaluating the model on a different driving range than it was trained on leads to improvements in general, but not for all driving ranges, in particular when the ball was captured at a different frequency compared to the data that the model was trained on. This problem was solved to some extent by retraining the model with small amounts of data on the new driving range. / Detta examensarbete har studerat problemet att förutspå den fullständiga bollbanan för en golfboll när den flyger i luften där endast den tredimensionella positionen av bollen observerades. Den typ av metod som användes för att lösa problemet använde sig av recurrent neural networks, i form av long short-term memory nätverk (LSTM). Motivationen bakom detta var att denna typ av nätverk hade lett till goda resultatet för liknande problem. Resultatet visar att använda sig av LSTM nätverk leder i genomsnitt till en 36.6 % förminskning av felet i den förutspådda nedslagsplatsen för bollen jämfört mot tidigare metoder som använder sig av numeriska simuleringar av en fysikalisk modell, om modellen användes på samma golfbana som den tränades på. Att använda en modell som var tränad på en annan golfbana leder till förbättringar i allmänhet, men inte om modellen användes på en golfbana där bollen fångades in med en annan frekvens. Detta problem löstes till en viss mån genom att träna om modellen med lite data från den nya golfbanan.
259

Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks

Holm, Noah, Plynning, Emil January 2018 (has links)
The low amount solved residential burglary crimes calls for new and innovative methods in the prevention and investigation of the cases. There were 22 600 reported residential burglaries in Sweden 2017 but only four to five percent of these will ever be solved. There are many initiatives in both Sweden and abroad for decreasing the amount of occurring residential burglaries and one of the areas that are being tested is the use of prediction methods for more efficient preventive actions. This thesis is an investigation of a potential method of prediction by using neural networks to identify areas that have a higher risk of burglaries on a daily basis. The model use reported burglaries to learn patterns in both space and time. The rationale for the existence of patterns is based on near repeat theories in criminology which states that after a burglary both the burgled victim and an area around that victim has an increased risk of additional burglaries. The work has been conducted in cooperation with the Swedish Police authority. The machine learning is implemented with convolutional long short-term memory (LSTM) neural networks with max pooling in three dimensions that learn from ten years of residential burglary data (2007-2016) in a study area in Stockholm, Sweden. The model's accuracy is measured by performing predictions of burglaries during 2017 on a daily basis. It classifies cells in a 36x36 grid with 600 meter square grid cells as areas with elevated risk or not. By classifying 4% of all grid cells during the year as risk areas, 43% of all burglaries are correctly predicted. The performance of the model could potentially be improved by further configuration of the parameters of the neural network, along with a use of more data with factors that are correlated to burglaries, for instance weather. Consequently, further work in these areas could increase the accuracy. The conclusion is that neural networks or machine learning in general could be a powerful and innovative tool for the Swedish Police authority to predict and moreover prevent certain crime. This thesis serves as a first prototype of how such a system could be implemented and used.
260

RNN-based Graph Neural Network for Credit Load Application leveraging Rejected Customer Cases

Nilsson, Oskar, Lilje, Benjamin January 2023 (has links)
Machine learning plays a vital role in preventing financial losses within the banking industry, and still, a lot of state of the art and industry-standard approaches within the field neglect rejected customer information and the potential information that they hold to detect similar risk behavior.This thesis explores the possibility of including this information during training and utilizing transactional history through an LSTM to improve the detection of defaults.  The model is structured so an encoder is first trained with or without rejected customers. Virtual distances are then calculated in the embedding space between the accepted customers. These distances are used to create a graph where each node contains an LSTM network, and a GCN passes messages between connected nodes. The model is validated using two datasets, one public Taiwan dataset and one private Swedish one provided through the collaborative company. The Taiwan dataset used 8000 data points with a 50/50 split in labels. The Swedish dataset used 4644 with the same split.  Multiple metrics were used to validate the impact of the rejected customers and the impact of using time-series data instead of static features. For the encoder part, reconstruction error was used to measure the difference in performance. When creating the edges, the homogeny of the neighborhoods and if a node had a majority of the same labeled neighbors as itself were determining factors, and for the classifier, accuracy, f1-score, and confusion matrix were used to compare results. The results of the work show that the impact of rejected customers is minor when it comes to changes in predictive power. Regarding the effects of using time-series information instead of static features, we saw a comparative result to XGBoost on the Taiwan dataset and an improvement in the predictive power on the Swedish dataset. The results also show the importance of a well-defined virtual distance is critical to the classifier's performance.

Page generated in 0.1438 seconds