• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 56
  • 51
  • 18
  • 11
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 324
  • 324
  • 93
  • 44
  • 42
  • 40
  • 35
  • 34
  • 33
  • 30
  • 28
  • 28
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

TiO₂ nanotube based dye-sensitised solar cells

Cummings, Franscious Riccardo January 2012 (has links)
Philosophiae Doctor - PhD / The first report of a functioning photo-electrochemical solar cell in 1991 attracted a lot of interest from scientists and industrial groups. From an industrial point of view these so-called dye-sensitised solar cells (DSCs) offered the promise of moderate efficiency devices at ultra-low costs, owing to simple processing methods and the use of inexpensive materials. From an academic viewpoint, DSCs raised important scientific questions around the fundamental processes governing their operation and how these processes influence the photon-to-electron conversion efficiency of the cell. Major successes have since been achieved in understanding these processes, however the conversion efficiency of the best manufactured DSCs remains around 11%, significantly lower than that of their silicon photovoltaic counterparts. In traditional DSCs, charge generation is achieved by ultrafast electron injection from a photo-excited ruthenium-based dye molecule into the conduction band of a film of TiO₂ nanoparticles, subsequent dye regeneration by an I⁻ /I⁻₃ containing redox electrolyte and finally hole transportation to a platinum-coated counter electrode. The low DSC efficiencies are attributed to scattering of electrons at the interface between two TiO₂ nanoparticles leading to recombination with holes present in the redox electrolyte. Recent studies have shown that the application of films of highly ordered TiO₂ nanotubes instead of nanoparticles has the potential to improve the overall conversion efficiency of the cell. This is ascribed to the one-dimensional nature of nanotubes, which provides a linear transportation route for electrons generated during operation of the DSC. As a result the recombination probability of the electrons with nearby holes in the device is decreased. This work investigated the synthesis of Al₂O₃-coated TiO₂ nanotubes via the anodisation technique for application in DSCs. TiO₂ nanotube arrays with an average length of 15 μm, diameter of 50 nm and wall thickness of 15 nm were synthesised via anodisation using an organic neutral electrolyte consisting of 2 M H₂O + 0.15 M NH₄F + ethylene glycol (EG) at an applied voltage of 60 V for 6 hours. In addition, scanning electron microscope (SEM) micrographs showed that anodisation at these conditions yields nanotubes with smooth walls and hexagonally shaped, closed bottoms. X-ray diffraction (XRD) patterns revealed that the as-anodised nanotubes were amorphous and as such were annealed at 450 °C for 2 hours in air at atmospheric pressure, which yielded crystalline anatase TiO₂ nanotubes. Highresolution transmission electron microscope (TEM) images revealed that the nanotube walls comprised of individual nano-sized TiO₂ crystallites. Photoluminescence (PL) spectroscopy showed that the optical properties, especially the bandgap of the TiO₂ nanotubes are dependent on the crystallinity, which in turn was dependent on the structural characteristics, such as the wall thickness, diameter and length. The PL measurements were supplemented by Raman spectra, which revealed an increased in the quantum confinement of the optical phonon modes of the nanotubes synthesised at low anodisation voltages, consequently yielding a larger bandgap The annealed nanotubes were then coated with a thin layer of alumina (Al₂O₃) using a simple sol-gel dip coating method, effectively used to coat films of nanoparticles. Atomic force microscopy (AFM) showed that the average nanotube diameter increased post sol-gel deposition, which suggests that the nanotubes are coated with a layer of Al₂O₃. This was confirmed with HR-TEM, in conjunction with selected area electron diffraction (SAED) and XRD analyses, which showed the coating of the nanotube walls with a thin layer of amorphous Al₂O₃ with a thickness between 4 and 7 nm. Ultraviolet-visible (UVvis) absorbance spectra showed that the dye-adsorption ability of the nanotubes are enhanced by the Al₂O₃ coating and hence is a viable material for solar cell application. Upon application in the DSC, it was found by means of photo-current density – voltage (I – V) measurements that a DSC fabricated with a 15 μm thick layer of bare TiO₂ nanotubes has a photon-to-light conversion efficiency of 4.56%, which increased to 4.88% after coating the nanotubes with a layer of alumina. However, these devices had poorer conversion efficiencies than bare and Al₂O₃-coated TiO₂ nanoparticle based DSCs, which boasted with efficiencies of 6.54 and 7.26%, respectively. The low efficiencies of the TiO₂ nanotube based DSCs are ascribed to the low surface area of the layer of nanotubes, which yielded low photocurrent densities. Electrochemical impedance spectroscopy (EIS) showed that the electron lifetime in the alumina coated nanotubes are almost 20 times greater than in a bare layer of nanoparticles. In addition, it was also found that the charge transfer resistance at the interface of the TiO₂/dye/electrolyte is the lowest for an Al₂O₃-coated TiO₂ layer.
122

A study of particle structure and film formation mechanism on the mechanical properties of synthetic rubber films

Tungchaiwattana, Somjit January 2014 (has links)
This thesis investigated a new group of poly(Bd)/poly(Bd-co-MAA) core-shell particles that were ionically crosslinked and cast as nanostructured ionomer films from aqueous dispersions. The new group of poly(Bd)/poly(Bd-co-MAA) core-shell particles were studied for structure-property relationships and morphology. The covalent crosslinking content in the core and the shell were varied at constant ionic crosslinking. Stress-strain data showed control of the nanostructured films. The chain transfer agent used during the preparation of the nanoparticles core-shells was shown to independently tune the mechanical properties of the films.
123

Sistemas magnéticos multicomponentes nanoestruturados hierarquicamente com propriedades biológicas e luminescentes / Multicomponent hierarchically nanostructured magnetic system with biological and luminescents properties

Corbi, Fabiana Cristina Andrade, 1977- 26 August 2018 (has links)
Orientador: Italo Odone Mazali / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-26T13:56:34Z (GMT). No. of bitstreams: 1 Corbi_FabianaCristinaAndrade_D.pdf: 10094232 bytes, checksum: 10529e501237e454e749493b87002f92 (MD5) Previous issue date: 2014 / Resumo: Na busca de um material multifuncional, esta Tese propõe a síntese de uma nanoestrutura hierárquica caroço@casca, sendo o caroço de magnetita e a casca de sílica mesoporosa. Desta combinação surge uma plataforma magneto-porosa que, além das propriedades magnéticas, pode apresentar outras propriedades de acordo com a espécie incorporada na camada de sílica. As partículas do caroço magnético foram obtidas via síntese solvotérmica a partir de cloreto de ferro(III) controlando-se a fase cristalina e a morfologia. A casca de sílica mesoporosa foi obtida via método sol-gel a partir do tetraetilortossilicato (TEOS), sendo o brometo de cetiltrimetilamônio o agente direcionador na formação dos poros. A fase cristalina foi caracterizada por medidas de difração de raios X (XRD), espectroscopia no infravermelho (IR) e Raman, e termogravimetria (TGA/DTA). A morfologia e a nanoestruturação do sistema foram analisadas por microscopia eletrônica de varredura (SEM), enquanto que as propriedades magnéticas foram determinadas por magnetometria de amostra vibrante (VSM), SQUID e hipertermia magnética. Em um primeiro momento, investigou-se a potencialidade do sistema no carregamento e liberação de fármacos utilizando-se um fármaco antibacteriano, a levofloxacina. Para a plataforma carregada com levofloxacina foram realizados ensaios de atividade antibacteriana, os quais demonstraram que o sistema apresenta atividade contra cepas Gram-positivas e Gram-negativas. Ensaios de citotoxicidade mostraram que tanto as partículas de magnetita quanto a plataforma magneto-porosa não são citotóxicas para células saudáveis (NIH/3T3) o que viabiliza sua aplicação biológica. O complexo luminescente diaquatris(tenoiltrifluoroacetonato)európio(III) foi incorporado à plataforma e o monitoramento do tempo de vida da emissão do complexo em função da temperatura revelou que o sistema funciona como uma sonda de temperatura, considerando-se que foi obtida uma variação linear de temperatura na faixa de interesse biológico (entre 36-45 °C). Nas medidas de hipertermia magnética a plataforma magneto-porosa elevou a temperatura da água em 8 °C. Aliando a este resultado à propriedade de sonda de temperatura, teríamos um termômetro que poderia ser utilizado in situ em procedimentos de terapia do câncer por aquecimento. Portanto, o conjunto de resultados obtidos revela que foi possível obter uma plataforma magneto-porosa multifuncional, e que diferentes ensaios podem ser realizados com o sistema visando diversas aplicações / Abstract: Due to the high versatility, the core@shell nanostructures represent a class of materials in the interface between chemistry and different areas, in which they find applications. Among them, the biomedical and pharmaceutical, catalysis and photoluminescence applications can be emphasized. Searching for a multifunctional material, this Thesis proposes the synthesis of a hierarchical nanostructure core@shell, being the core of magnetite and the shell of mesoporous silica. From this arrangement a magneto-porous platform is obtained, in which besides the magnetic property other properties can be achieved according to the species incorporated into the silica layer. The magnetic core was obtained by solvothermal synthesis from iron(III) chloride by controlling the crystalline phase and morphology. The shell of mesoporous silica was obtained by the sol-gel method from tetraethylorthosilicate (TEOS), being the cetyltrimethylammonium bromide the directing agent in the formation of pores. The crystalline phase was characterized by X-ray diffraction (XRD) measurements, infrared (IR) and Raman spectroscopies and thermogravimetry (TGA/DTA). The morphology and the nanostructure of the system were analyzed by scanning electron microscopy (SEM), while the magnetic properties were determined by vibrating magnetometry sample (VSM), SQUID and magnetic hyperthermia. At first, we investigated the potential of the system in the loading and releasing of drugs using the antibiotic levofloxacin. Antibacterial assays have demonstrated that the system is active against Gram-positive and Gram-negative bacterial strains. Cytotoxicity assays showed that the particles of magnetite and the magneto-porous platform are not cytotoxic to healthy cells (NIH/3T3), which enables its biological application. The diaquatris(tenoyltrifluoroacetonate)europium(III) luminescent complex was incorporated into the platform and studies of monitoring lifetime of the emission of the complex as a function of temperature revealed that the system operates as a temperature probe, since a linear variation was observed in the temperature range of biological interest (between 36-45 °C). In magnetic hyperthermia measurements, in the presence of the magneto-porous platform the water temperature was elevated by 8 ° C. Combining this result to the property of temperature probe, we could have a thermometer that may possibly be used in situ in cancer therapy procedures by heating. Therefore, the set of results show that it is possible to obtain a magneto-porous multifunctional platform and different assays may be performed with the system aiming for diverse applications / Doutorado / Quimica Inorganica / Doutora em Ciências
124

Environmental and biomedical applications of iron oxide/ mesoporous silica core-shell nanocomposites

Egodawatte, Shani Nirasha 01 May 2016 (has links)
Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI). Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.
125

Three-dimensional bioprinting of volumetric tissues and organs

Kilian, David, Ahlfeld, Tilman, Akkineni, Ashwini Rahul, Lode, Anja, Gelinsky, Michael 04 June 2020 (has links)
Three-dimensional (3D) bioprinting has become a fast-developing research field in the last few years. Many different technical solutions are available, with extrusion-based printing being the most promising and versatile method. In addition, a variety of biomaterials are already available for 3D printing of live cells. The real challenge, however, remains bioprinting of macroscopic, volumetric constructs of well-defined structures since hydrogels used for cell-embedding must consist of rather soft materials. This article describes recent developments to overcome these limitations that prevent clinical applications of bioprinted human tissues. New approaches include technical solutions such as in situ cross-linking or gelation processes that now can be performed during the bioprinting process, modified bioinks that combine suitable viscosity and cytocompatible gelation mechanisms, and utilization of additional materials to provide mechanical strength to the cell-laden constructs.
126

Controlling Adsorption Properties of Metal-Organic Framework Particles through Synthesis Protocols / 精密合成に立脚した多孔性配位錯体微粒子の吸着特性制御

Fujiwara, Atsushi 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23233号 / 工博第4877号 / 新制||工||1761(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 宮原 稔, 教授 佐野 紀彰, 教授 松坂 修二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
127

Design of Embedded Metal Catalysts via Reverser Micro-Emulsion System: a Way to Suppress Catalyst Deactivation by Metal Sintering

Al Mana, Noor 19 June 2016 (has links)
The development of highly selective and active, long-lasting, robust, low-cost and environmentally benign catalytic materials is the greatest challenge in the area of catalysis study. In this context, core-shell structures where the active sites are embedded inside the protecting shell have attracted a lot of researchers working in the field of catalysis owing to their enhanced physical and chemical properties suppress catalyst deactivation. Also, a new active site generated at the interface between the core and shell may increases the activity and efficiency of the catalyst in catalytic reactions especially for oxide shells that exhibit redox properties such as TiO2 and CeO2. Moreover, coating oxide layer over metal nanoparticles (NPs) can be designed to provide porosity (micropore/mesopore) that gives selectivity of the various reactants by the different gas diffusion rates. In this thesis, we will discuss the concept of catalyst stabilization against metal sintering by a core-shell system. In particular we will study the mechanistic of forming core-shell particles and the key parameters that can influence the properties and morphology of the Pt metal particle core and SiO2 shell (Pt@SiO2) using the reverse micro-emulsion method. The Pt@SiO2 core-shell catalysts were investigated for low-temperature CO oxidation reaction. The study was further extended to other catalytic applications by varying the composition of the core as well as the chemical nature of the shell material. The Pt NPs were embedded within another oxide matrix such as ZrO2 and TiO2 for CO oxidation reaction. These materials were studied in details to identify the factors governing the coating of the oxide around the metal NPs. Next, a more challenging system, namely, bimetallic Ni9Pt NPs embedded in TiO2 and ZrO2 matrix were investigated for dry reforming of methane reaction at high temperatures. The challenges of designing Ni9Pt@oxide core-shell structure with TiO2 and ZrO2 and their tolerance of the structure to the conditions of dry reforming of methane will be discussed.
128

Catalyst Development and Control of Catalyst Deactivation for Carbon Dioxide Conversion

Otor, Hope O. January 2020 (has links)
No description available.
129

Vrstevnaté keramiky připravené metodou termoplastické koextruze / Core-Shell Ceramic Structures Prepared by Thermoplastic Co-Extrusion Method

Kaštyl, Jaroslav January 2015 (has links)
In the doctoral thesis, the bi-layer ceramic bodies with core-shell geometry were prepared by thermoplastic co-extrusion method and for these composite bodies the mechanical properties were studied. For study of co-extrusion and mechanical properties were designed two composite systems. First system ZTA-A combined the dense core ZTA (zirconia-toughened alumina) and the dense shell Al2O3. Second system ZST-Z consisted of porous core and dense shell made from ZrO2 for both cases. In the thesis, the rheology of ceramic thermoplastic suspensions and their mutual influence during co-extrusion was studied. Subsequently, the debinding process and sintering were studied, and based on the optimization of all process steps were obtained defect-free bodies with core-shell geometry. The mechanical properties (elastic modulus, hardness and bending strength) were determined for sintered bodies. To estimate the stress path in the core shell bodies loaded in bending, the relationship considering different elastic moduli of the core and the shell was used. For bodies of ZTA-A system was increased the strength in comparison with monolithic bodies of the individual components. Thus, bodies with high surface hardness of shell from Al2O3 and moreover having high fracture strength in bending were obtained. The effective elastic modulus was decreased for bodies of ZST-Z system up to 25 % in comparison with the elastic modulus of dense monolithic samples. The same effective modulus of elasticity was possible to achieve with core-shell bodies while maintaining significantly higher fracture strength than monolithic porous bodies or pipes.
130

Modification of a commercial poly (VDF-co-HFP) copolymer latex

Naidoo, Sarnia January 2019 (has links)
Fluorinated polymers are niche macromolecules that play an essential role in modern life. The special properties of fluorine, including among others, a large electronegativity (ca 3.98), low polarisability, small van der Waal’s radius (135 pm) and the strong C-F bond (ca 485 kJ · mol−1), impart unique properties to organofluorine compounds. Flu-oropolymers exhibit a combination of desirable traits, including high thermal stability, low coefficient of friction, chemical inertness, oleo- and hydrophobicity, and low surface tension. Among the fluoropolymers, polyvinylidene fluoride (PVDF), and copolymers of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), have found applications in the coatings industry as the binder in exterior coatings. The chemical inertness of poly(VDF-co-HFP) copolymer, however, prevents disper-sion of pigments into the coating and also inhibits adhesion of the coating onto substrates. An acrylic modifier polymer is typically added to the poly(VDF-co-HFP) copolymer to improve the dispersion of pigments and the adhesion of the coating. This acrylic copoly-mer is physically blended with the poly(VDF-co-HFP) copolymer on a macromolecular scale (i.e. it forms a thermodynamically miscible blend). The loading of acrylic copolymer in commercial PVDF coatings is often in the range of 20 to 30 % by weight of polymer solids. Typically, copolymers of methyl methacrylate, ethyl acrylate and methacrylic esters are employed. Alternative strategies to overcome the adhesion problem include, among others, chem-ical modification of the surface of the fluoropolymer film. This can be achieved by graft copolymerisation or core shell emulsion polymerisation. These methods are used to funcionalise the polymer chains, while maintaining the desirable properties of the parent polymer. Due to environmental regulations, industry focus has shifted towards develop-ing coatings with a low volatile organic compound (VOC) content. Aqueous, low VOC, air-drying coatings can be formulated directly from the acrylic modified fluoropolymer (AMF) latex and have superior properties to solvent based, high VOC, air-dry coatings. Their advantages include low viscosities, reduced flammability, reduced odour and easy application using conventional equipment. A large portion of the aqueous coatings are sold into the architectural market with over 70 % of architectural paints used in the United States being classified as aqueous. Arkema Inc. has developed a commercial aqueous fluoropolymer latex using the method of seeded emulsion polymerisation. VDF and HFP monomers are randomly copolymerised via emulsion polymerisation. This poly(VDF-co-HFP) copolymer may be used as the seed material in a core-shell polymerisation using acrylic monomers. Kato et al. [49] discloses the preparation of an AMF formulation for poly(VDF-co-HFP) copoly-mer. Preliminary testing of membrane textiles coated with such formulations showed that the AMF coatings degrade under UV irradiation more rapidly than is is expected for poly(VDF-co-HFP) copolymer. The patent indicates that the nature of the product formed by the emulsion polymerisation is not well understood and the product my be either a graft copolymer of a core-shell system. The aim of this research reported in this dissertation was to shed light on the nature of the final product, and to verify the claims made in the above-mentioned patent. Various acrylic monomers were copolymerised via seeded emulsion polymerisation us-ing commercial poly(VDF-co-HFP) copolymer as the seed material. The concentration and the ratios of the monomers were varied according to the formulation guidelines in Kato et al.[49]. ATR-FTIR spectroscopy and19F NMR spectroscopy was used to de-termine the microstructure of the resultant latexes. ATR-FTIR spectra confirmed the presence of C=C and C=O bonds in latexes. This indicates that unreacted acrylic com-ponents are present. The ATR-FTIR spectra of the films indicated the disappearance of the C=C bonds from the latex, which indicates that the monomers are evaporated easily from the latexes during film formation. The 19F NMR spectra confirmed that no modi-fication of the poly(VDF-co-HFP) copolymer backbone took place during the reactions. The particle size distribution graphs showed an increase particle sizes and this suggested that some self polymerisation of the monomer occurred. The viscosity of the latexes were lower compared to the due to the experiments being conducted under dilution. The flow characteristics of the poly(VDF-co-HFP) copolymer was also influenced with some reactions yielding shear thickening latexes as compared to the shear thinning poly(VDF-co-HFP) copolymerc. The reactions also yielded latexes which displayed lower and higher surface tensions than the poly(VDF-co-HFP) copolymer. Therefore, the conclusion may be drawn from this work that core-shell formation occurred during the emulsion copolymerisation, as opposed to grafting of the monomer onto the poly(VDF-co-HFP) copolymer backbone. The claims made in the literature could not be substantiated; in particluar, the reported improvements in film forming ability were not realised. No commercially useful advantage exists for the emulsion copolymerisation of poly(VDF-co-HFP) copolymer with acrylic monomers over the solution blending of poly(VDF-co-HFP) copolymer with acrylic copolymers. / Dissertation (MEng)--University of Pretoria, 2019. / Chemical Engineering / MEng / Unrestricted

Page generated in 0.0479 seconds