• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 56
  • 51
  • 18
  • 11
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 324
  • 324
  • 93
  • 44
  • 42
  • 40
  • 35
  • 34
  • 33
  • 30
  • 28
  • 28
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Funktionalisierte Polymerkomposite auf Basis von Poly(3,4-ethylendioxythiophen) und Gold

Hain, Jessica 15 April 2008 (has links)
Poly(3,4-ethylenedioxythiophene), PEDOT, belongs to the group of conducting polymers and is characterized by its high stability, a moderate band gap and its optical transparency in the conductive state. A large disadvantage of conducting polymers, and also PEDOT, is their poor solubility. One way to achieve processible materials is the synthesis of colloidal particles. Thus, this work focuses on the development of conductive particles by preparing composite structures. Polymeric colloids like latex particles and microgels were used as templates for the oxidative polymerization of EDOT. Depending on template structure completely different composite morphologies with variable properties were obtained. It was found that modification with PEDOT did not only cause conductive particles for application as humidity sensor materials, but also candidates for further functionalization with gold nanoparticles (Au-NPs). Due to a multi-stage synthesis route it was possible to achieve polystyrene(core)-PEDOT(shell)-particles decored with Au-NPs. Microgels acting as “micro reactors” for the incorporation of PEDOT and Au-NPs were also used for preparing multifunctional composites for catalytic applications. / Poly(3,4-ethylendioxythiophen), PEDOT, gehört zur Gruppe der leitfähigen Polymere und zeichnet sich durch seine hohe Stabilität, eine moderate Bandlücke und seine optische Transparenz im dotierten Zustand aus. Ein Nachteil leitfähiger Polymere, wie auch von PEDOT, ist deren schlechte Löslichkeit. Die Synthese kolloidaler Partikel bietet jedoch eine Möglichkeit dieses Problem zu umgehen. In diesem Zusammenhang richtete sich der Fokus dieser Arbeit auf die Darstellung leitfähiger Partikel in Form von Kompositstrukturen. Polymerkolloide, wie Latex- und Mikrogelpartikel, sind als Template eingesetzt worden, in deren Gegenwart PEDOT durch eine oxidative Polymerisation synthetisiert wurde. In Abhängigkeit von der Struktur des Templats sind unterschiedliche Kompositmorphologien mit steuerbaren Eigenschaften erhalten worden. Auf diese Weise wurden neben Materialien für die Feuchtigkeitssensorik leitfähige Kompositpartikel hergestellt, die zusätzlich mit Gold-Nanopartikeln (Au-NP) funktionalisiert werden konnten. Durch ein mehrstufiges Syntheseverfahren sind somit Polystyrol(Kern)-PEDOT(Schale)-Partikel mit Au-NP-funktionalisierter Oberfläche synthetisiert worden. Mikrogelpartikel, die als „Mikroreaktoren“ für die Inkorporation von PEDOT- und Au-NP dienten, wurden ebenfalls eingesetzt, um multifunktionale Komposite mit katalytischen Eigenschaften herzustellen.
252

Growth of axial and core-shell (In,Ga)N/GaN heterostructures on GaN nanowires on TiN

van Treeck, David 10 May 2022 (has links)
In dieser Arbeit werden das Wachstum und die optischen Eigenschaften von selbstorganisierten GaN Nanodrähten auf TiN und nanodrahtbasierten (In,Ga)N/GaN Heterostrukturen für LED Anwendungen untersucht. Zu diesem Zweck wird das selbstorganisierte Wachstum von langen, dünnen und nicht koaleszierten GaN Nanodrähten auf TiN mittels Molekularstrahlepitaxie demonstriert. In weiteren Untersuchungen werden diese gut separierten und nicht koaleszierten GaN Nanodrähte auf TiN als Basis für die Herstellung von axialen und radialen Heterostrukturen verwendet. Trotz der definierten Morphologie der aktiven Zonen ist die Lichtausbeute der axialen (In,Ga)N Quantentöpfen eher gering. Um das Potenzial der Molekularstrahlepitaxie für das Wachstum von Kern-Hüllen-Strukturen im Allgemeinen besser zu verstehen, wird der Aspekt, dass die Seitenfacetten der Nanodrähte nur sequentiell den verschiedenen Materialstrahlen ausgesetzt werden, durch Modellierung des Wachstums von GaN Hüllen auf GaN Nanodrähten untersucht. Es wird gezeigt, dass Ga Adatomdiffusionsprozesse zwischen verschiedenen Facetten das Wachstum auf den Seitenfacetten stark beeinflussen. Neben der Untersuchung von radialsymmetrischen (In,Ga)N Hüllen wird ein neuer Wachstumsansatz vorgestellt, der die kontrollierte Abscheidung von III-Nitridhüllen auf verschiedenen Seiten des Nanodrahtes ermöglicht. Unter Ausnutzung der Richtungsabhängigkeit der Materialstrahlen in einer Molekularstrahlepitaxieanlage ermöglicht der neuartige Ansatz die sequentielle Abscheidung verschiedener Verbundstoffmaterialien auf einer bestimmten Seite der Nanodrähte, um eine einseitige Schale zu wachsen. Diese sequentielle gerichtete Abscheidungsmethode ermöglicht prinzipiell die Kombination mehrerer aktiver Zonen mit unterschiedlichen Eigenschaften auf verschiedenen lateralen Seiten ein und derselben Nano- oder Mikrostruktur. Solche Architekturen könnten beispielsweise für die Realisierung von mehrfarbigen Pixeln für Mikro-LED-Displays interessant sein. / In this thesis, the growth and the optical characteristics of self-assembled GaN nanowires on TiN and nanowire-based (In,Ga)N/GaN heterostructures for LED applications is investigated. To this end, the self-assembled growth of long, thin and uncoalesced GaN nanowires on TiN by molecular beam epitaxy is demonstrated. Subsequently, these well-separated and uncoalesced GaN nanowires on TiN are used as a basis for the fabrication of axial and radial heterostructures. Despite the well-defined morphology of the active regions, the luminous efficiency of axial (In,Ga)N quantum wells is found to be rather low. To better understand the potential of molecular beam epitaxy for the growth of core-shell structures in general, the aspect of the side facets of the nanowires being only sequentially exposed to the different material beams is studied by modeling the shell growth of GaN shells on GaN nanowires. It is shown that Ga adatom diffusion processes between different facets strongly affect the growth on the side facets. Besides the fundamental investigation of the growth of radially symmetric (In,Ga)N shells, a new growth approach which allows the controlled deposition of III-nitride shells on different sides of the nanowire is presented. Using the directionality of the material beams in an molecular beam epitaxy system, the novel approach facilitates the sequential deposition of different compound materials on a specific side of the nanowires to grow a one-sided shell. This sequential directional deposition method may in principle allow the combination of multiple active regions with different properties on different lateral sides of one and the same nano- or microstructure. Such architectures, for instance, might be interesting for the realization of multi-color pixels for micro-LED displays.
253

Untersuchungen zum Aufbau von NaEuF4/NaGdF4-Kern/Schale-Nanopartikeln mittels spektroskopischer Methoden / Studies on the structure of NaEuF4/NaGdF4 core-shell nanoparticles using spectroscopic methods

Dühnen, Simon 04 February 2016 (has links)
Nanopartikel aus Natriumseltenerdfluoriden (NaREF4) erlangen aufgrund ihrer besonderen optischen und magnetischen Eigenschaften zunehmend Beachtung im Bereich der Lebenswissenschaften und bei optoelektronischen Anwendungen. Einige NaREF4-Materialien wie z.B. NaYF4, NaGdF4 und NaLuF4 sind geeignete Wirtsgitter für eine Dotierung mit Seltenerdelementen wie z.B. Eu(III), Tb(III), Nd(III), Pr(III) und Er(III), die Lumineszenzübergänge im sichtbaren Bereich aufweisen. Um NaREF4-Nanopartikel mit hoher Lumineszenzquantenausbeute zu erhalten oder um multifunktionale Nanomaterialien herzustellen, können über einen Kern/Schale-Aufbau mehrere Materialien innerhalb eines Partikels vereint werden. Bislang wurde jedoch nur in wenigen Studien der Kern/Schale-Aufbau von NaREF4-Nanopartikeln detailliert untersucht und die meisten dieser Studien basierten auf elektronenmikroskopischen Analysemethoden. Vor diesem Hintergrund wurde im Rahmen dieser Arbeit der Syntheseverlauf von nahezu monodispersen NaEuF4/NaGdF4-Kern/Schale-Nanopartikeln als Modellsystem untersucht, wobei zur Herstellung der Partikel zwei verschiedene Synthesemethoden verwendet wurden. Neben Untersuchungen durch Röntgendiffraktometrie und Transmissionselektronenmikroskopie wurden zusätzlich Methoden der optischen Spektroskopie eingesetzt, mit denen eine quantitative Bestimmung der Durchmischung zwischen dem Eu(III)-haltigen Kern und der Gd(III)-haltigen Schale innerhalb des Nanopartikels möglich war. Durch den Einsatz spezieller, sensibilisierender Oberflächenliganden konnte zudem der Eu(III)-Anteil auf der Oberfläche der Kern/Schale-Nanopartikel ermittelt werden. Obwohl beide Syntheseverfahren zu NaEuF4/NaGdF4-Kern/Schale-Nanopartikeln führten, die in Form, Größe und Kristallstruktur sehr ähnlich waren, wurden deutliche Unterschiede in der Durchmischung von NaEuF4-Kern- und NaGdF4-Schalenmaterial sichtbar. Aus den quantitativen, spektroskopischen Untersuchungen zum Kern/Schale-Aufbau ging hervor, dass in Abhängigkeit zur verwendeten Synthesemethode unterschiedlich stark ausgeprägte Eu(III)-Dotierungskonzentrationen und -gradienten in der NaGdF4-Schale der synthetisierten Kern/Schale-Nanopartikel vorlagen.
254

Étude des propriétés mécaniques de l'or sous forme de nanofil et de structure nanoporeuse par dynamique moléculaire / Study of the mechanical properties of gold in the form of nanowire and nanoporous structure by molecular dynamics

Guillotte, Maxime 12 November 2019 (has links)
Dans cette thèse nous avons étudié en détail les propriétés mécaniques de l’or sous forme de nanofils et de structures nanoporeuses revêtues ou non de silicium amorphe (a-Si). Ces travaux ont été effectués par dynamique moléculaire. Nous avons dans un premier temps étudié la déformation cyclique de nanofils d’or (NF-Au) et de nanofils cœur-coquille or-silicium amorphe (NF-AuSi). Ces simulations ont montré que le NF-Au est déformé au cours des cycles par deux mécanismes prépondérants : le maclage extensif puis le glissement d’un unique plan atomique. Le cyclage a pour effet d’altérer progressivement la morphologie de la structure en augmentant le nombre et la taille des défauts créés en surface. La déformation cyclique du NF-AuSi montre que le revêtement de a-Si délocalise la plasticité le long de la structure et permet de mieux conserver la morphologie initiale du cœur. Nous avons ensuite développé une méthode originale de génération de l’or nanoporeux. Cette méthode a été validée par la comparaison structurale et mécanique avec des résultats expérimentaux. Puis nous avons étudié la déformation en traction et en compression de différentes structures générées par cette méthode. Nous avons dans les deux cas mis en évidence les mécanismes de déformation des ligaments. En traction, nous avons apporté de nouveaux résultats permettant de mieux comprendre pourquoi l’or nanoporeux est fragile alors que l’or massif est ductile. En particulier, nous avons étudié comment s’opère la fracture en cascade des ligaments par transfert de contrainte entre ceux-ci. En compression nous avons entre autres montré que l’effondrement des pores et la création de joints de grains est responsable de l’augmentation de la contrainte à la transition écoulement-densification. Les simulations de traction et de compression des mêmes structures mais revêtues de silicium amorphe montrent plusieurs résultats intéressants. Par exemple, la résistance des structures est augmentée d’un facteur 2 à 4. De plus, le revêtement a pour effet de délocaliser la plasticité ce qui augmente la ductilité notamment en traction. En compression, la transition écoulement-densification est avancée probablement en raison de la diminution de la taille des pores causée par le revêtement. / In this thesis we have studied in detail the mechanical properties of gold nanowires and nanoporous gold with and without an amorphous silicon coating (a-Si). This work was done using molecular dynamics simulation. We first studied the cyclic deformation of gold nanowires (Au-NW) and gold-silicon core-shell nanowires (AuSi-NW). These simulations showed that the Au-NW is deformed during cyclic loading by two main mechanisms: extensive twinning and the slip of a single atomic plane. Cycling gradually alters the morphology of the structure by increasing the number and size of defects created on the surface. The cyclic deformation of the AuSi-NW shows that the a-Si coating delocalizes the plasticity along the structure and allows to better preserve the initial morphology of the core. We then developed an original method for generating nanoporous gold. This method was validated by structural and mechanical comparison with experimental results. Then we studied the tensile and compressive deformation of different structures generated by this method. In both cases, we have highlighted the deformation mechanisms of ligaments. In tension, our simulations have brought new results to better understand why nanoporous gold is brittle while bulk gold is ductile. In particular, we studied how the catastrophic failure of ligaments occurs by stress transfer between them. In compression we have shown, for example, that pore collapse and the creation of grain boundaries are responsible for the increase of stress at the transition from flow to densification. Tensile and compression tests simulations on the same structures but coated with amorphous silicon show several interesting results. For example, the strength of the structures is increased by a factor of 2 to 4. In addition, the coating has the effect of delocalizing the plasticity, which increases ductility, particularly in tension. In compression, the transition from flow to densification is advanced probably due to the decrease in pore size caused by the coating.
255

固体高分子形燃料電池用高活性・高耐久コアシェル触媒の新規合成法に関する研究 / コタイ コウブンシガタ ネンリョウ デンチヨウ コウカッセイ コウタイキュウ コア シェル ショクバイ ノ シンキ ゴウセイホウ ニカンスル ケンキュウ / 固体高分子形燃料電池用高活性高耐久コアシェル触媒の新規合成法に関する研究

青木 直也, Naoya Aoki 04 March 2021 (has links)
博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
256

Synthesis and Characterization of Novel Gold-Based Nanoparticulate Chemotherapeutic Agents

Benin, Bogdan Markovich 17 May 2016 (has links)
No description available.
257

ELECTROSPINNING FABRICATION OF CERAMIC FIBERS FOR TRANSPARENT CONDUCTING AND HOLLOW TUBE MEMBRANE APPLICATIONS

Rajala, Jonathan Watsell January 2016 (has links)
No description available.
258

Multiscale Biomaterials for Cell and Tissue Engineering

Agarwal, Pranay 10 August 2017 (has links)
No description available.
259

Polymerizable BODIPY Probes for Molecularly Imprinted Optical Sensing

Sun, Yijuan 10 October 2024 (has links)
Ein aktueller Forschungsschwerpunkt in der analytischen Chemie ist die Entwicklung (bio)chemischer Sensoren mit hoher Selektivität, Empfindlichkeit und schnellem Ansprechverhalten für den Nachweis und das Monitoring von besorgniserregenden Analyten in Realproben. Fluoreszierende molekular geprägte Sensormaterialien bieten einen innovativen Ansatz, indem sie die spezifischen Erkennungsfähigkeiten molekular geprägter Polymere (MIPs) mit der hohen Empfindlichkeit der Fluoreszenzdetektion kombinieren. Ziel dieser Arbeit war es, MIPs mit optischen Sensoreigenschaften zu entwickeln, um Umweltschadstoffe schnell und spezifisch nachzuweisen. Zur Konstruktion von MIPs mit außergewöhnlichen optischen Eigenschaften wurden fluoreszierende Sonden-Monomere auf Basis des Bor-Dipyrromethen (BODIPY)-Fluorophors entwickelt, synthetisiert und charakterisiert. Verschiedene Akzeptor-Einheiten wurden in das BODIPY-Gerüsts eingeführt, um das Ansprechverhalten auf Zielanalyten mit Carboxylatfunktionen (z.B. Arzneimittelwirkstoffe, Pestizide, oberflächenaktive Substanzen) zu untersuchen. Diese fluoreszierenden Sonden-Moleküle wurden mit polymerisierbaren Einheiten ausgestattet, um ihre kovalente Einbindung in ein quervernetztes MIP-Netzwerk zu ermöglichen, das als Erkennungselement und Signalübermittler dient. Die Molekülstrukturen wurden durch Röntgenkristallanalyse bestätigt. Mit Hilfe spektroskopischer Methoden wurden die photophysikalischen Eigenschaften der Sonden-Monomere und ihre Bindungsaffinität für die Zielmoleküle untersucht, wobei die Sonden-Monomere eine starke Fluoreszenz im sichtbaren bis nahen Infrarotbereich aufwiesen und bemerkenswerte spektrale Veränderungen bei der Bindung mit den Zielanalyten zeigten. Der Einbau der Sonden in MIP-Schalen auf Siliziumdioxid-Kernpartikeln ermöglichte den selektiven Nachweis eines bestimmten Antibiotikums gegenüber anderen Antibiotika mit ähnlichen funktionellen Gruppen. Weiterhin wurden rot-emittierende BODIPY-Farbstoffe zur Dotierung von Polymerkernen eingesetzt, um ein Sensorsystem mit dualer Emission (d. h., mit Farbstoff dotierter Polymerkern/SiO2-Schale/fluoreszierendes Sonden-Monomer enthaltende MIP-Schale). Diese sensorischen MIPs zeigten eine ratiometrische Fluoreszenzantwort auf ein Antihistaminikum, wobei das eingebaute Referenzsignal im Kern eine Selbstkalibrierung in den Assays ermöglichte. Ein weiteres dual fluoreszierendes MIP-Sensormaterial (d. h. farbstoffdotierter Siliziumdioxidkern/fluoreszierendes Sonden-Monomer enthaltende MIP-Schale) wurde für die direkte Messung von Perfluorcarbonsäuren entwickelt. Die Integration der sensorischen MIPs in einen mikrofluidischen Aufbau führte zu einer mobilen und vielseitigen Sensorplattform, die einfach zu bedienen ist. / One of the current focal points of research in the field of analytical chemistry is the development of (bio)chemical sensors with high selectivity, sensitivity, and rapid response for the detection and monitoring of analytes of high concern in complicated samples. Fluorescent molecularly imprinted sensor materials represent a cutting-edge approach to developing sensors that combine the specific recognition capabilities of molecularly imprinted polymers (MIPs) with the high sensitivity of fluorescence detection. The objective of this thesis was to design, synthesize, and evaluate MIPs with optical sensing properties, focusing mainly on fluorescence, with the aim of rapidly and specifically detecting emerging environmental contaminants. To construct MIPs with exceptional optical characteristics and a well-defined binding mechanism for the recognition of target molecules, a series of tailor-made fluorescent probe monomers based on the boron-dipyrromethene (BODIPY) fluorophore have been designed, synthesized and characterized. Identical acceptor modules were introduced at various positions, or different acceptor modules were introduced at the same position of the BODIPY scaffold, to preliminarily investigate the response behavior of different types of probe monomers for target analytes containing carboxylate functions, ranging from pharmaceuticals to pesticides and surfactants. Additionally, one or two polymerizable units were attached to these fluorescent probe molecules to enable their covalent incorporation into a crosslinked MIP network, serving as recognition element and signal transducers. The molecular structures of these probe monomers were confirmed via X-ray crystal analysis. Spectroscopic approaches were employed to assess the photophysical characteristics of the probe monomers and their binding affinities for the target molecules. These probe monomers exhibited strong fluorescence in the visible-to-near infrared wavelength region, along with remarkable spectral changes upon binding with the target analytes. Incorporation of the fluorescent probes into MIP shells on silica cores achieved selective detection of a targeted antibiotic from other antibiotics with similar carboxylate, amine and aromatic functional groups. In addition, the synthesis of red-emitting BODIPY dyes for doping into polymer cores facilitated the fabrication of a dual-emission sensing system (i.e., dye-doped polymer core/silica shell/MIP shell). The sensory MIPs exhibited a ratiometric fluorescence response to an antihistaminic drug and the presence of a built-in reference signal in the core provided self-calibration for MIP assays. Furthermore, another dual-fluorescent MIP sensor material was engineered (i.e., dye-doped silica core/MIP shell) for the direct monitoring of perfluorocarboxylic acids. The integration of the sensory MIPs into a dedicated microfluidic setup resulted in a portable and easy-to-operate versatile sensing platform.
260

Amphiphiles gemini cationiques : de l'auto-assemblage organique chiral aux micro- et nanomatériaux composites fonctionnels / Cationic gemini amphiphiles : from chiral organic self-assembly towards functional composite micro- and nanomaterials

Dedovets, Dmytro 10 February 2014 (has links)
En raison de leurs propriétés physiques uniques, les matériaux chiraux trouvent des applications aussi bien en physique, qu’en chimie ou biologie. Ici, nous nous intéressons à la synthèse de nanoobjets inorganiques chiraux et à leur utilisation en tant que systèmes nano-électromécaniques.Différents auto-assemblages à base de surfactants Gemini et de contre-ions chiraux (nucleotide ou tartrate) formant dans l’eau des hélices micrométriques et nanométriques sont étudiés. Ces auto-assemblages sont ensuite utilisés comme structures directrices pour la formation d’hélices de silice par transcription inorganique. Le contrôle de la réactivité du précurseur inorganique est crucial pour parvenir aux caractéristiques mécaniques souhaitées.Enfin, une minéralisation secondaire des nano-hélices avec du TiO2 et du ZnO a lieu afin de créer des matériaux fonctionnels aux propriétés électroniques ou piézoélectriques. Différentes approches de synthèse et l’optimisation des procédés sont présentées. / Due to their unique physical properties chiral materials are used in a wide range of applications in chemistry, physics and biology. In this work we focus on the fabrication of chiral functional materials for NanoElectroMechanical systems based on the inorganic transcription of self-assembled surfactants.At first we introduce a new Nucleoamphiphile based system that self-assembles into micrometer sized helical fibers in aqueous medium. The effect of a wide range of chemical and physical parameters on the morphology of the aggregates was investigated. Then the synthesis of chiral silica structures based on the organic micro- and nanohelices as templates was studied to achieve the required mechanical properties of the material. Control over the precursor reactivity is crucial for the transcription of the morphology of the template into the silica replica. Secondary mineralization with TiO2 or ZnO was performed to provide the necessary electrical properties and functionality to the chiral material. Different approaches and the optimization parameters are described in detail. Finally the measurement of the mechanical properties of the silica nanotubes and nanohelices by AFM as the first step of the NEMS development will be described.

Page generated in 0.0465 seconds