• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 305
  • 289
  • 59
  • 55
  • 24
  • 13
  • 13
  • 8
  • 6
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 944
  • 281
  • 272
  • 199
  • 134
  • 129
  • 129
  • 121
  • 102
  • 99
  • 96
  • 92
  • 76
  • 69
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
701

Propuesta de diseño de un pavimento rígido conformado de agregados marginales con presencia de cenizas volcánicas para el proyecto: Mejoramiento de carretera Moquegua – Omate - Arequipa, Tramo II, sector 1 / Design proposal of a rigid pavement made of marginal aggregates with presence of volcanic ash for the project: Improvement of road Moquegua - Omate - Arequipa, section II, sector 1

Ayquipa Espinoza, Lorena Estefanny, Vilca Benavente, Branixa Nataly 17 July 2020 (has links)
En el Perú existen zonas afectadas por la geología volcánica ya que disponen de insumos naturales llamados cenizas volcánicas. Este es un material formado por pequeños fragmentos de lavas silíceas de granos finos de colores blanquecinos, blandos y deleznables. Suelen presentar diversos grados de cementación, de tipo fisil, lo que los identifica en la categoría de suelos colapsables. Es por ello, que para la construcción del pavimento se requiere realizar la estabilización o mejoramiento de la subrasante para el siguiente proyecto que se desarrolla entre Arequipa y Moquegua. La presente investigación tiene como objetivo evaluar el uso de agregados marginales con cenizas volcánicas para el diseño de losa de concreto hidráulico referida, la misma que como estructura será evaluada con los resultados del módulo de flexión y esfuerzo crítico. Los resultados demostraron que, en la caracterización de agregados finos al contener cenizas volcánicas, no cumplan con todos los requerimientos propuestos en la norma peruana (EG-2013) del manual de carreteras. Sin embargo, el American Concrete Institute (ACI) incorpora excepciones para condiciones particulares de los áridos, posibilitando su uso a partir del cumplimiento de la resistencia y durabilidad requerida. Se propuso realizar el diseño de una mezcla de concreto para una resistencia teórica de f´c= 280 kg/cm2. Sin embargo, al ensayar las probetas a los 28 días de curado se obtuvo una resistencia de f´c= 380 kg/cm2 esto se debe a la estrecha relación positiva que presenta la ceniza volcánica con el cemento puzolánico empleado para la mezcla. / In Peru there are areas affected by volcanic geology and that have natural inputs called volcanic ash. This is a material formed by small fragments of siliceous lavas of fine grains of whitish, soft and delectable colors. They usually present varying degrees of cementation, of the fisile type, which identifies them in the category of collapsible soils. That is why, for the construction of the pavement it is necessary to perform the stabilization or improvement of the subgrade for the next project that is developed between Arequipa and Moquegua. The purpose of this research is to evaluate the use of marginal aggregates with volcanic ash for the design of the loss of referred hydraulic concrete, which will be determined as a structure with the results of the flexural and critical stress module. The results showed that, in the characterization of fine aggregates containing volcanic ash, they do not require all the requirements proposed in the Peruvian standard (EG-2013) of the road manual. However, the American Concrete Institute (ACI) incorporates the specific conditions of the aggregates, which allows its use based on compliance with the required strength and durability. It was proposed to design a concrete mix for a theoretical strength of f´c = 280 kg / cm2. However, when testing the probes after 28 days of curing, a resistance of f'c = 380 kg / cm2 was obtained, due to the close positive relationship between volcanic ash and the pozzolanic cement used for the mixture. / Tesis
702

Vyhodnocení protismykových vlastností povrchů vozovek na rampách dálničních křižovatek / Evaluation of Motorway Intersection Ramps Surface Skid Resistance

Kachtík, Jiří January 2012 (has links)
The aim of the master´s thesis is to evaluate the current measurement of skid resistance road surface properties of selected interchanges. Assess their development depending on the type, speed and number of vehicles, type of asphalt wearing course, directional and height ratios ramps of motorway intersections.
703

Uniaxial and Biaxial Restraint in Concrete Pavement Undergoing Alkali-Silica Reaction

Thapa, Romit 09 August 2018 (has links)
No description available.
704

Structure-Borne Vehicle Interior Noise Estimation Using Accelerometer Based Intelligent Tires in Passenger Vehicles

Achanta, Yashasvi 22 June 2023 (has links)
With advancements in technology, electric vehicles are dominating the world making Internal Combustion engines less relevant, and hence vehicles are becoming quieter than ever before. But noise levels remain a significant concern for both passengers and automotive manufacturers. The vehicle's interior noise can affect the overall driving experience and even the safety of the driver and the passengers. The two main sources of vehicle interior noise are attributed to air-borne noises and structure-borne noises. A modern automobile is a complicated vibration system with several excitation sources like the engine, transmission system, tire/road interface excitation, and wind noise. With electric vehicles on the rise, the engine and transmission noise is practically eliminated, and effective preventive measures and control systems are already in place to reduce the aerodynamic-based noise, vibrations, and harshness (NVH) in modern automobiles making the structure-borne noise the most crucial of the noise sources. Tire/road interaction noise being the most dominant among the structure-borne noise is the main concern of the vehicle interior noise. The two main sources of vehicle interior noise induced by the tire pavement interaction noise are structure-borne noise induced by the low-frequency excitation and air-borne noises produced by the mid and high-frequency excitation. The present study tested an all-season tire over varying operational conditions such as different speeds, normal loads, and inflation pressures on an asphalt surface. Two tri-axial accelerometers attached 1800 apart from each other on the inner liner of the tire of a Volkswagen Jetta were used to measure the circumferential, lateral, and radial acceleration data. An Inertial Measurement Unit (IMU) and velocity box (VBOX) were instrumented in the vehicle to measure the acceleration at the center of gravity (COG) position of the vehicle and the longitudinal velocity of the vehicle respectively. The vehicle was also equipped with a modified hybrid of Close Proximity Testing (CPX) and On-Board Sound Intensity (OBSI) sound measurement systems which were designed and manufactured in-house to measure the tire/road interaction noise at the leading and trailing edges of the tire/road contact patch. Another microphone was instrumented inside the passenger compartment of the vehicle at the passenger's seat right ear position over the tire mounted with the sound measurement system to measure the vehicle interior noise as interpreted by the passengers in the vehicle. Two data acquisition systems coupled with a real-time Simulink model were used to collect all the measured data, one for the noise signals and the other for velocity and acceleration signals. The focus of the current study is to review different generation and amplification mechanisms of the structure-induced tire/road interaction noise and find the relevant dominant frequency ranges of the vehicle interior noise induced by the structure-borne noises using already established physics-based models and correlation techniques. It also aims to find correlations between tire acceleration, vehicle interior noise, and tire pavement interaction noise and their effect on different operational conditions like load, inflation pressure, and velocity. All the signals are studied in the time, frequency, and spectral domain and insights have been drawn on different tire/road noise generation and amplification mechanisms. / Master of Science / Structure-induced vehicle interior noise is one of the main concerns surrounding the automotive NVH industry and tire/road interaction noise being the most dominant source among the structure-borne noises affecting the vehicle interior noise is a major problem to the tire and automotive manufacturers nowadays. It leads to discomfort for the driver and the passengers in the vehicle and can cause fatigue, which in turn can directly affect the vehicle's safety. Several attempts have been made to reduce vehicle interior noise using statistical, physics-based, and hybrid models, but the research is still nowhere near completion. The current study aims to identify the frequency ranges affecting the structure-borne noise-induced vehicle interior noise and uses data-driven approaches in estimating the vehicle interior noise using only the acceleration of the tire. A test setup was designed and developed in-house where a tri-axial accelerometer embedded inside the inner liner of the tire measures the X, Y, and Z acceleration signals. Several microphones are instrumented at the tire/road contact surface and inside the passenger cabin to measure the tire/road interaction noise and the vehicle interior noise. The longitudinal velocity of the vehicle and the accelerations at the center of gravity of the vehicle have also been measured. Multiple data-driven models have been developed to directly predict the vehicle interior noise and tire/road interaction noise using the accelerometer data. This research is directly helpful for the automotive and tire industries by giving them insights on designing and developing quieter tires by using data-driven approaches and further using these with active control systems can mask the vehicle interior noise to acceptable levels in real-time.
705

Multiphysics Simulation and Innovative Characterization of Freezing Soils

Liu, Zhen 08 March 2013 (has links)
No description available.
706

INTEGRATED ASSESSMENT OF FREE DRAINING BASE AND SUBBASE MATERIALS UNDER FLEXIBLE PAVEMENT

Rabab'ah, Samer Rateb January 2007 (has links)
No description available.
707

Cement Stabilization of Aggregate Base Materials Blended with Reclaimed Asphalt Pavement

Brown, Ashley Vannoy 12 May 2006 (has links) (PDF)
The purpose of this research was to investigate the effects of reclaimed asphalt pavement (RAP) content and cement content on the strength and durability of recycled aggregate base materials. Specifically, the unconfined compressive strength (UCS) and final dielectric value in the Tube Suction Test (TST) were measured in a full-factorial experimental design including five RAP contents, five cement contents, and three replicate specimens of each possible treatment. Specimen mixtures consisted of 0, 25, 50, 75, or 100 percent RAP and 0.0, 0.5, 1.0, 1.5, or 2.0 percent Type I/II Portland cement. Both the RAP and base materials were sampled from the I-84 pavement reconstruction project performed in Weber Canyon near Morgan, Utah, during the summers of 2004 and 2005. The laboratory testing procedures consisted of material characterizations, specimen preparation, and subjection of the specimens to strength and durability testing, and the data were evaluated using analysis of variance (ANOVA) testing. Both the RAP and base materials included in this research were determined to be non-plastic, and the AASHTO and Unified soil classifications for the RAP material were determined to be A-1-a and SM (well-graded sand with gravel), respectively, and for the base material they were A-1-a and SW-SM (well-graded sand with silt and gravel), respectively. The optimum moisture contents (OMCs) for the blended materials were between 5.6 and 6.6 percent, and maximum dry density (MDD) values were between 129.7 and 135.5 lb/ft3. In both cases, decreasing values were associated with increasing RAP contents. The results of the ANOVA performed on the UCS data indicate that UCS decreases from 425 to 208 psi as RAP content increases from 0 to 100 percent and increases from 63 to 564 psi as cement content increases from 0.0 to 2.0 percent. Similarly, the final dielectric value decreases from 14.9 to 6.1 as RAP content increases from 0 to 100 percent and decreases from 14.0 to 5.8 as cement content increases from 0.0 to 2.0 percent. With design criteria requiring 7-day UCS values between 300 and 400 psi and final dielectric values less than 10 in the TST, the results of this research suggest that milling plans should be utilized to achieve RAP contents in the range of 50 to 75 percent, and a cement content of 1.0 percent should be specified for this material. Cement contents less than 1.0 percent are not sufficient to stabilize the material, and greater cement contents may cause cracking. Because control of the actual cement content in the field depends on the contractor's equipment and skill, inspection protocols should be implemented during construction to ensure high-quality work. Additional recommendations are associated with the construction process. The specimens prepared in this research were compacted to relative densities of 100 percent using modified Proctor energy. Therefore, field compaction levels must approach these density values if the same material properties are to be achieved. In addition, all specimens tested in this study were cured at 100 percent relative humidity. Following compaction in the field, cement-treated layers should be moistened frequently during the first few days after construction or promptly sealed with a prime coat or wearing surface to ensure that the cement continues to hydrate. Variability in RAP and cement contents should also be minimized to achieve consistent material properties.
708

Characterization of Recycled Concrete for use as Pavement Base Material

Blankenagel, Brandon J. 20 August 2005 (has links) (PDF)
The use of recycled concrete material (RCM) as pavement base material is a promising but unproven technique for road rehabilitation and construction. A telephone survey conducted to investigate the state of the practice concerning RCM usage in Utah County revealed that RCM is infrequently used in this application due primarily to a lack of practical knowledge about the engineering properties of the material. Therefore, this research was aimed at evaluating the physical properties, strength parameters, and durability characteristics of both demolition and haul-back sources of RCM available in Utah County for use as pavement base material. The study included extensive laboratory and field testing. Laboratory tests included California bearing ratio (CBR), unconfined compressive strength (UCS), stiffness, freeze-thaw cycling, moisture susceptibility, abrasion, salinity, and alkalinity evaluations. Non-destructive testing was utilized in the field to monitor seasonal variation in stiffness of an RCM pavement base layer over a 1-year period. The testing included a dynamic cone penetrometer, ground-penetrating radar, a heavy Clegg impact soil tester, a soil stiffness gauge, and a portable falling-weight deflectometer. The laboratory testing indicated that the demolition material exhibited lower strength and stiffness than the haul-back material and reduced UCS loss after freeze-thaw cycling. However, the demolition material received a moisture susceptibility rating of good in the tube suction test, while the haul-back material was rated as marginal. Both materials exhibited self-cementing effects that led to approximately 180 percent increases in UCS over a 7-day curing period. Seven-day UCS values were 1260 kPa and 1820 kPa for the demolition and haul-back materials, respectively, and corresponding CBR values were 22 and 55. The field monitoring demonstrated that the RCM base layer was susceptible to stiffness changes due primarily to changes in moisture. In its saturated state during spring testing, the site experienced CBR and stiffness losses of up to 60 percent compared to summer-time values. RCM compares well with typical pavement base materials in many respects. Given the laboratory and field data developed in this research, engineers should be able to estimate the strength and durability parameters of RCM needed for pavement design.
709

Effect of High Percentages of Reclaimed Asphalt Pavement on Mechanical Properties of Cement-Treated Base Material

Tolbert, Jacob Clark 10 July 2014 (has links) (PDF)
Full-depth reclamation (FDR) is an increasingly common technique that is used to rehabilitate flexible pavements. Implementation of FDR on rehabilitation projects produces several desirable benefits. However, these benefits are not fully realized due to the fact that state department of transportation specifications typically limit the reclaimed asphalt pavement (RAP) content of pavement base material to 50 percent. The objective of this research was to evaluate the effects of RAP content, cement content, temperature, curing time, curing condition, and moisture state on the strength, stiffness, and deformation characteristics of cement-treated base (CTB) mixtures containing high percentages of RAP.For this research, one aggregate base material and one RAP material were used for all samples. RAP content ranged from 0 to 100 percent in increments of 25 percent, and low, medium, and high cement levels corresponding to 7-day unconfined compressive strength (UCS) values of 200, 400, and 600 psi, respectively, were selected for testing. Moisture-density, UCS, resilient modulus, and permanent deformation tests were performed for various combinations of factors, and several statistical analyses were utilized to evaluate the results of the UCS, resilient modulus, and permanent deformation testing.The results of this work show that CTB containing RAP can be made to achieve 7-day UCS values approaching 600 psi regardless of RAP content. With regards to stiffness, the data collected in this study indicate that the resilient modulus of CTB containing RAP is affected by temperature in the range from 72 to 140°F for the low cement level. Permanent deformation of CTB containing RAP is significantly affected by RAP content and cement level at the test temperature of 140°F. At the low cement level, temperature is also a significant variable. As the 7-day UCS reaches approximately 400 psi, permanent deformation is reduced to negligible quantities. The results of this research indicate that the inverse relationship observed between permanent deformation and 7-day UCS is statistically significant.Given that the principle conclusion from this work is that CTB with high RAP contents can perform satisfactorily as a base material when a sufficient amount of cement is applied, agencies currently specifying limits on the percentage of RAP that can be used as a part of reclaimed base material in the FDR process should reevaluate their policies and specifications with the goal of allowing the use of high RAP contents where appropriate.
710

Investigation of Laboratory Test Procedures for Assessing the Structural Capacity of Geogrid-Reinforced Aggregate Base Materials

Knighton, Jaren Tolman 01 March 2015 (has links) (PDF)
The modulus of aggregate base layers in pavement structures can potentially be increased through the use of geogrid. However, methods for determining how much structural benefit can be expected from a given geogrid product have not been standardized. A laboratory testing protocol is therefore needed to enable evaluation, in terms of modulus or California bearing ratio (CBR), for example, of the degree of improvement that may be achieved by a given geogrid. Consequently, the objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Program Report 598 repeated load triaxial, American Association of State Highway and Transportation Officials (AASHTO) T 307 quick shear, and CBR testing protocols were used to test unreinforced and geogrid-reinforced aggregate base materials from northern Utah. Biaxial and triaxial geogrid were investigated in multiple reinforcement configurations. Several statistical analyses were performed on the results of each test method to identify the test that is most likely to consistently show an improvement in the structural capacity of aggregate base materials reinforced with geogrid. The results of this research indicate that, for the methods and materials evaluated in this study, calculation of the modulus at 2 percent strain from the AASHTO T 307 quick shear data is the test method most likely to consistently show an improvement in structural capacity associated with geogrid reinforcement. Of the three configurations investigated as part of this research, placing the geogrid at an upper position within a specimen is preferred. Given that the end goal of the use of geogrid reinforcement is to improve pavement performance, additional research is needed to compare the results of the AASHTO T 307 quick shear test obtained in the laboratory with the structural capacity of geogrid-reinforced aggregate base materials measured in the field. In addition, correlations between the results of the AASHTO T 307 quick shear test and resilient modulus need to be investigated in order to incorporate the findings of the AASHTO T 307 quick shear test on reinforced base materials into mechanistic-empirical pavement design.

Page generated in 0.0571 seconds