• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 10
  • 4
  • 3
  • 2
  • Tagged with
  • 200
  • 192
  • 119
  • 36
  • 31
  • 29
  • 27
  • 24
  • 24
  • 22
  • 20
  • 20
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Comparing hyperspectral reflectance characteristics of Caucasian bluestem and native tallgrass prairie over a growing season

Grabow, Bethany Susan Porter January 1900 (has links)
Master of Science / Department of Agronomy / Walter H. Fick / Kevin Price / Caucasian bluestem [Bothriochloa bladhii (Retz) S.T. Blake] is a perennial, C4 warm-season bunchgrass that was first introduced in 1929 from Russia as a potential forage crop in the Great Plains. Due to its invasiveness and tolerance of drought and grazing pressure, Caucasian bluestem can out-compete native prairie species. Research has shown that this species, when compared to native tallgrass species in the Flint Hills of Kansas causes decreased cattle weight gains because of its poor forage quality relative to tallgrass prairie species. Traditional methods of plant data measurements and mapping are costly and time consuming. Use of remotely sensed data to map and monitor the distribution and spread of this plant would be most useful in the control of this aggressive invader. Spectroradiometer data were collected over the 2009 growing season to determine if and when Caucasian bluestem was spectrally unique from native tallgrass prairie species. Observations were made from June through September as the plants were going into a senescent state. Reflectance data were measured approximately every two weeks or when clear/near clear sky conditions prevailed. Statistical analyses for differences in spectral characteristics were conducted to determine the optimal spectral bands, indices and timing for discriminating Caucasian bluestem from native tallgrass species. Difference in reflectance for spectral reflectance of bands 760 nm, 940 nm, 1,070 nm, and 1,186 nm were found to be statistically significant on the June 17th and June 30th sampling dates. The following band ratios and indices were found to be significantly different between Caucasian bluestem and native range on the June 17th collection date: Simple Ratio, Modified Normalized Difference Index, Normalized Phaeophytinization Index, Plant Index 1, Normalized Water Difference Index, Water Band Index, Normalized Difference Nitrogen Index, and the Normalized Difference Lignin Index. Findings of this study suggest that Caucasian bluestem can be spectrally discriminated from native tallgrass prairies of the Flint Hills in Kansas if the measurements are collected in mid to late June. Statistical analyses also showed differences between treatments for percent litter, grass, and forb basal cover.
72

In planta characterization of Magnaporthe oryzae biotrophy-associated secreted (BAS) proteins and key secretion components

Giraldo, Martha Cecilia January 1900 (has links)
Doctor of Philosophy / Department of Plant Pathology / Barbara S. Valent / Rice blast caused by the ascomycetous fungus Magnaporthe oryzae remains a threat to global sustainable agriculture and food security. This pathogen infects staple cereal crops such as rice, wheat, barley and millets, as well as turf grasses, in a distinct way among fungal plant pathogens, which we described in the first chapter. In addition to economical importance, rice blast is a model pathosystem for difficult-to-study biotrophic fungi and fungal-plant interactions. We are studying proteins that fungi secrete inside living cells to block plant defenses and control host cell processes; these proteins are called effectors. To date mechanisms for secretion and delivery of effectors inside host cells during disease establishment remain unknown. This step is critical to ensure the successful infection. So far, the only commonality found among all unique small-secreted blast effector proteins is their accumulation in a novel in planta structure called the biotrophic-interfacial complex (BIC). Identifying effectors and understanding how they function inside rice cells are important for attaining durable disease control. In the second chapter, we presented one approach to address this challenge. We characterized four candidate effector genes that were highly expressed specifically during the rice cell invasion. Using transgenic fungi that secrete fluorescently-labeled versions of each protein allowed me to follow them during invasion in vivo by live cell imaging. These candidates show distinct secretion patterns suggesting a spatially-segregated secretion mechanism for effectors. Results revealed a BIC-located strong candidate cytoplasmic blast effector, two putative cell-to-cell movement proteins and a putative extrainvasive hyphal membrane (EIHM)-matrix protein, which has become a valuable tool for assessing successful infection sites. In the third chapter, we test if normal secretion components of filamentous fungi are involved in accumulation of effectors into BICs. We report localization studies with M. oryzae orthologs of conserved secretion machinery components to investigate secretion mechanisms for effectors showing preferential BIC accumulation and for non-BIC proteins such as BAS4. Especially bright fluorescence adjacent to BICs from Mlc1p (Myosin Light Chain, a Spitzenkörper marker), from Snc1p (a secretory vesicle marker), and from Yup1p (a putative t-SNARE endosomal protein) suggest secretion actively occurs in the BIC-associated cells. Localization of Spa2p (a polarisome marker), as a distinct spot at the tips of the bulbous invasive hyphae (IH) in planta, suggests the existence of two secretion complexes after the fungus switches growth from the polarized filamentous primary hyphae to bulbous IH. In the final chapter on future perspectives, we present some strategies towards the molecular understanding of the M. oryzae secretion mechanism during biotrophic invasion, which will lead to novel strategies for disease control.
73

Grain sorghum response to postemergence applications of mesotrione and quizalofop

Abit, Mary Joy Manacpo January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Kassim Al-Khatib / Growth chamber, greenhouse and field experiments using conventional grain sorghum were conducted to 1) evaluate the differential response of grain sorghum hybrids to POST application of mesotrione at various rates and application timings, and 2) determine the physiology of tolerance of grain sorghum hybrids to mesotrione. Sorghum response ranged from susceptible to tolerant. Mesotrione dose-response studies on four sorghum hybrids revealed that injury symptoms were greatest in Pioneer 85G01 and least in Asgrow Seneca. Mesotrione applied EPOST (early POST) injured sorghum more than when applied at MPOST (mid POST) or LPOST (late POST) timings. Observed injury symptoms were not well correlated with grain yield and were transient, thus injury did not reduce sorghum grain yield. Foliar absorption or translocation of mesotrione in tolerant hybrids did not differ with that of susceptible hybrids but metabolism was more rapid in tolerant than in susceptible hybrids. Initial grain sorghum injury was severe and will likely be a major concern to producers. Field and growth chambers studies were conducted on herbicide-resistant grain sorghum to 1) determine the effect of quizalofop rates, application timings, and herbicide tank mixes on acetyl-coenzyme A carboxylase (ACCase)-resistant grain sorghum injury and yield, and 2) determine if herbicide metabolism is an additional mechanism that could explain the resistance of ACCase- and acetolactate synthase (ALS)-resistant grain sorghum. Depending on rate, EPOST application caused the greatest injury while the least injury occurred with LPOST application. Crop injury from quizalofop was more prominent at rates higher than the proposed use rate (62 g ha [superscript]-1) in grain sorghum. Sorghum grain yield was not affected by quizalofop regardless of rates or application timings. Weed control was greater when quizalofop was applied with other herbicides than when applied alone. Herbicide treatments except those that included 2,4-D caused slight to no sorghum injury. Results of the quizalofop metabolism study do not support the involvement of differential metabolism in the observed response of grain sorghum to quizalofop. Rimsulfuron metabolism by ALS-resistant sorghum is more rapid than the susceptible genotypes, thus explaining the observed rapid recovery of grain sorghum plants from rimsulfuron injury in the field.
74

Spatial distribution, dispersal behavior and population structure of Tribolium castaneum herbst (Coleoptera: tenebrionidae)

Semeao, Altair Arlindo January 1900 (has links)
Doctor of Philosophy / Department of Entomology / James F. Campbell / Phillip E. Sloderbeck / Robert "Jeff" J. Whitworth / Knowledge of factors influencing the establishment, persistence and distribution of stored-product pests aids the development of effective Integrated Pest Management (IPM) programs in food storage and processing facilities. This research focused primarily on Tribolium castaneum, which is one of the most important pests of mills. Populations of T. castaneum from different food facilities can potentially be interconnected by either their own dispersal behavior or by human transportation. Population genetic structure analyses based on microsatellites and other insertion-deletion polymorphisms (“indels”) showed that populations from different mills around the US are genetically distinct from each other, but the level of differentiation was not correlated with the geographic distance. A potential source of insect infestation within a food facility is spillage that accumulates outside or movement from bulk storage facilities on site. Results from three facilities showed that most stored-product species were captured both inside and outside buildings, but T. castaneum was rarely captured outside of the facilities. Spatial distribution of all species outside was associated with the proximity of buildings, not necessarily with areas with accumulated spillage. T. castaneum populations inside facilities are potentially exposed to frequent genetic bottlenecks resulting from structural fumigations. Changes in allele frequencies through time, based on the analysis of microsatellites and other indels in individuals collected in a mill, confirmed bottleneck effects. To understand how spatial distribution of T. castaneum within a mill could be influenced by environmental and physical factors, a range of variables were measured at each trap location. There was significant variation among trap locations regarding beetle captures and the variables measured, but increase in beetle captures correlated only with increase in temperature and spillage production. Tribolium castaneum response to visual cues could influence attraction to pheromone and kairomone olfactory cues used in traps. Results of laboratory experiments showed that adults respond to tall narrow black shapes and placing traps in front of these shapes can increase captures. This research provides new insights into factors influencing the spatial distribution of T. castaneum and could help in improving monitoring programs for this important pest of the food industry.
75

Phosphorus fertilization of corn using subsurface drip irrigation

Olson, Jeremy Ray January 1900 (has links)
Master of Science / Department of Agronomy / Scott A. Staggenborg / In recent years, subsurface drip irrigation (SDI) acres have increased substantially. The use of SDI on corn (Zea Mays L.) in the Great Plains has increased due to increased land costs, reduced irrigation water availability, and higher commodity prices. Applying phosphorus (P) fertilizer through a SDI system becomes a major advantage, but further investigation of the interaction between water and fertilizer is needed. Sub-surface drip irrigation systems can be used to better improve the application efficiencies of fertilizers, applying in wet soil-root zones can lead to better uptake of soil applied materials. The objectives of this study were to determine how corn responds to P fertilizer applied via SDI and to create methodologies to simulate fertilizer and irrigation water compatibility tests for use in SDI systems. A plot sized SDI system was installed near Manhattan, KS to evaluate P treatments. Eight separate P fertilizers were applied via SDI mid-season at a rate of 34 kg P2O5 ha-1 and split-plots were created with 2x2 starter band at planting. Nitrogen was a non-limiting factor, with 180 kg N ha-1 applied as urea. Both starter fertilizer and injected fertilizer affected corn grain yield as indicated by the starter by treatment interaction. Split applying starter fertilizer at planting increased yield. A secondary laboratory study was conducted to evaluate the water and fertilizer interactions. A filtration system was used to simulate field conditions and each fertilizer/water mix was filtered through a 400 mesh filter paper to evaluate fertilizer precipitant formation. Sixteen common fertilizers were analyzed with different rates of Avail. Differences were observed between fertilizer treatments, visually and quantitatively. A secondary P soil movement field study was performed to quantify P concentrations around the SDI emitter. Soils were sampled in a 30.5 cm by 30.5 cm square adjacent to the emitter on a control treatment and a fertilized treatment, in both years of the study. Visual and quantitative differences were observed between the two treatments in both years of the study. When P fertilizers were added to the SDI system, higher P concentrations were found very close to the emitter orifice. Control treatments exhibited lower P concentrations around the emitter than fertilized treatments.
76

Responses of switchgrass (panicum virgatum l.) to precipitation amount and temperature.

Hartman, Jeffrey C. January 1900 (has links)
Master of Science / Department of Biology / Jesse B. Nippert / Jesse B. Nippert / Anthropogenic climate change is likely to alter the function and composition of ecosystems worldwide through increased precipitation variability and temperatures. To predict ecosystem responses, a greater understanding of the physiological and growth responses of plants is required. Dominant species drive ecosystem responses, and it is essential to understand how they respond to understand potential ecosystem changes. Dominant species, such as switchgrass (Panicum virgatum L.), posses large genotypic and phenotypic variability, which will impact the degree of responses to projected climate changes. I studied the physiological and growth responses of switchgrass, a common perennial warm-season C4 grass that is native to the tallgrass prairie, to alterations in precipitation amount and temperature. The first experiment I conducted focused on the responses of three ecotypes of P. virgatum to three precipitation regimes (average, 25% below, 25% above). I concluded that the physiological responses of photosynthesis, stomatal conductance, transpiration, dark-adapted fluorescence, and mid-day water potential in P. virgatum were explained by ecotypic differences. Robust responses to altered precipitation were seen in the water use efficiency, mid-day water potential, and aboveground biomass. Ecotypic differences were also seen in several aboveground biomass variables, and most strikingly in flowering times and rates. There were few interactions between ecotype and precipitation, suggesting precipitation is a strong driver of biomass production, whereas adaption of ecotypes to their local environment affects physiological processes. A second experiment studied the response of local populations of P. virgatum to nocturnal warming. Results showed significant differences in daytime E, daytime gs, and flowering phenology between treatments. Differences in aboveground biomass were between topographic positions. I concluded that water availability, based on topographic position, is a strong driver of P. virgatum aboveground biomass production, but nocturnal warming has the potential to impact flowering phenology, physiological responses, and exacerbate plant water stress. I also reviewed the literature on the ecological effects of implementing switchgrass cultivation for biofuel. From the literature review, I concluded that large-scale switchgrass cultivation will have widespread ecological impacts. If landscape heterogeneity is maintained through harvest rotations, no till farming, and mixed species composition, ecosystem services can be maintained while providing economic value.
77

Pyrasulfotole & bromoxynil response in grain sorghum.

Lally, Nathan Gerard January 1900 (has links)
Master of Science / Department of Agronomy / Curtis R. Thompson / Curtis R. Thompson / Postemergent herbicide options for grain sorghum are limited and increasingly challenged by the development of herbicide resistant weeds. The herbicide pyrasulfotole & bromoxynil (P&B) was evaluated for potential use in grain sorghum and for control of a suspected HPPD-resistant Palmer amaranth population. Field experiments were conducted near Manhattan and Rossville, KS, to evaluate grain sorghum response to P&B with and without 2,4-D applied to growth stages from 1-leaf through the flag leaf stage and tankmixed with 2,4-D ester, amine, or dicamba applied to 3- and 6-leaf sorghum. The addition of 2,4-D ester did not reduce sorghum injury from P&B alone. Increasing the rate of P&B increased injury. Treatments applied to 1- and 4-leaf sorghum were injured the most. All P&B treated sorghum, regardless of timing, yielded 8 to 20% less than the untreated check. Pyrasulfotole & bromoxynil applied alone or with dicamba injured sorghum less than 2,4-D applied at 3- or 6-leaf. Increasing the rate from 140 to 280 g ha[superscript]-1 2,4-D amine or ester increased injury by 6 to 11%. Yields were lowest when P&B was applied with 2,4-D amine at 140 g ha[superscript]-1 and 2,4-D amine or ester at 280 g ha[superscript]-1 compared to all other treatments. Increasing the rate of growth regulator herbicides decreased yields by 8% and did not reduce crop injury from P&B alone. Greenhouse and field experiments were conducted to evaluate the response of two suspected P&B-resistant (R1 & R2) and one susceptible (S) Palmer amaranth population to P&B, atrazine, and tembotrione. Herbicides were applied when plants were 7 to 19 cm tall. The S population was controlled with less than field use rates. A resistance index (RI) of 4.8 to 11.0 was determined for R1 and R2 in greenhouse and field experiments. Tembotrione controlled 100% of S in all experiments, while providing 63 to 86% injury to R1 and R2 populations. Atrazine did not control the resistant populations. Pyrasofotole & bromoxynil will be an valuable tool for weed control in sorghum, however, Palmer amaranth populations exist that will not be controlled.
78

Influence of nitrogen on weed growth and competition with grain sorghum

Unruh, Bryan Jacob January 1900 (has links)
Master of Science / Department of Agronomy / Johanna Dille / Nitrogen (N) fertilizer intended for the crop may benefit highly competitive weeds to the detriment of the crop. A field experiment was conducted in 2009 to determine the influence of increasing N fertilizer rates and increasing Palmer amaranth densities on weed biomass and grain sorghum biomass and yield. Three rates were 0, 67, and 134 kg N ha-1 and natural populations of Palmer amaranth were thinned to densities of 0, 0.5, 1, 2, 4, and 8 plants m-1 of row. Palmer amaranth biomass increased as weed density and N rates increased. Weed-free grain sorghum yields were similar across all three N rates, and parameter estimates of yield across Palmer amaranth densities were not different between N rates. Based on the parameter estimates from the rectangular hyperbola model, initial slope (I) as density approached zero was 16%. Maximum expected yield loss (A) at high Palmer amaranth densities was 68%. Palmer amaranth showed a high response to N and the higher N rate increased the ability of the weed to reduce grain sorghum yield. A greenhouse experiment was conducted to determine the influence of six N rates on growth of six selected plant species, including grain sorghum, soybean, yellow foxtail, velvetleaf, Palmer amaranth and shattercane. Covariance analysis was performed with N rate as a covariate. Biomass of all species increased as N rate increased in both runs of the study. Soybean responded the least to N rate of all species in regards to biomass, height and leaf area production. In the first run, the biomass of three grass species (grain sorghum, yellow foxtail, shattercane) had similar estimates of slope and intercept of biomass across N rates. In the second run, the biomass slopes of grain sorghum and shattercane differed from soybean and were the only slopes that differed between species. Palmer amaranth had the highest rate of response as N increased but slopes of height were similar for Palmer amaranth, grain sorghum and shattercane. Soybean leaf area slopes were different from grain sorghum, yellow foxtail, and velvetleaf, but all other slopes were not different among species. Addition of N to grain sorghum increased weed growth and resulted in more yield loss as a result of weed density. The greenhouse study demonstrated that grain sorghum and Palmer amaranth increased in response similarly to the addition of N. Alternative N fertilizer management could play a role in minimizing Palmer amaranth impacts in grain sorghum production.
79

Environmental effects on turfgrass growth and water use

Peterson, Kenton W. January 1900 (has links)
Doctor of Philosophy / Department of Horticulture, Forestry, and Recreation Resources / Dale J. Bremer / Jack D. Fry / Researchers and practitioners can use numerous techniques to measure or estimate evapotranspiration (ET) from turfgrass but little is known about how they compare to ET using standard lysimeters. An investigation was conducted to compare measurements of ET from lysimeters (LYS[subscript]E[subscript]T) with ET estimates from the FAO56 Penman-Monteith (PM[subscript]E[subscript]T) and Priestley-Taylor (PT[subscript]E[subscript]T) empirical models, atmometers (AT[subscript]E[subscript]T), eddy covariance (EC[subscript]E[subscript]T), and a canopy stomatal conductance model that estimates transpiration (COND[subscript]T). Methods were compared at the same site during the 2010, 2011, and 2012 growing seasons. Overall, PT[subscript]E[subscript]T and EC[subscript]E[subscript]T were not different from LYS[subscript]E[subscript]T, whereas PM[subscript]E[subscript]T, AT[subscript]E[subscript]T, and COND[subscript]T, increasingly underestimated LYS[subscript]E[subscript]T. Differences exist among ET measurement techniques and one should employ the technique that best fits their situation. An atmometer is an inexpensive tool that can be used to measure turfgrass ET within microclimates, such as those typically found in an urban home lawn. An investigation was conducted to compare AT[subscript]E[subscript]T estimates with PM[subscript]E[subscript]T estimates within a number of lawn microclimates. Home lawns in Manhattan and Wichita, KS, were selected for study during the growing seasons of 2010 and 2011. Open sward AT[subscript]E[subscript]T was 4.73 mm d[superscript]-[superscript]1, whereas PM[subscript]E[subscript]T was 5.48 mm d[superscript]-[superscript]1. Within microclimates, AT[subscript]E[subscript]T was 3.94 mm d[superscript]-[superscript]1 and PM[subscript]E[subscript]T 3.23 mm d[superscript]-[superscript]1. Atmometers can provide practitioners with reliable estimates of PM[subscript]E[subscript]T within microclimates. Zoysiagrass (Zoysia spp.) is a common turfgrass used on home lawns and golf courses. However, poor shade tolerance and cold hardiness have limited its use in the transition zone. A study was conducted to determine changes and differences in growth and physiology among selected Zoysia over a three-year period (2010-2012) in the transition zone. The genotypes were 'Emerald' [Z. japonica × Z. pacifica], 'Zorro' [Z. matrella], 'Meyer' and Chinese Common [Z. japonica], and experimental progeny Exp1 [Z. matrella × Z. japonica], and Exp2 and Exp3 [(Z. japonica × Z. pacifica) × Z. japonica]. 'Zorro' and 'Emerald' experienced winter injury. 'Meyer', Chinese Common, and Exp1 showed poor performance over the three-years. The Exp2 and Exp3 progeny, maintained high percent cover, visual quality, and tiller density, and may provide practitioners more shade-tolerant cultivar choices in the transition zone.
80

Urban brownfields to gardens : minimizing human exposure to lead and arsenic

Defoe, Phillip Peterson January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Ganga M. Hettiarachchi / Urban gardens have been a popular re-use option in the transformation of brownfields—located in older industrialized cities and near peri-urban developments. They provide accessible, available, and affordable supplies of fresh fruits and vegetables, effectively reducing the enigma of “food deserts” across U.S. cities. However, direct (soil ingestion, inhalation) and indirect (soil-plant-human) human exposure concerns about real or perceived trace element contamination in urban soils persist due to previous use. Elevated lead (Pb) and/or arsenic (As) concentrations were found at two (Tacoma and Seattle, WA) urban gardens. The Tacoma site was contaminated with Pb (51 to 312 mg kg-1) and As (39 to 146 mg kg-1), whereas soil Pb at the Seattle site ranged from 506 to 2,022 mg kg-1, and As concentrations were < 20 mg kg-1. Experimental design at both sites was a randomized complete block with a split-plot arrangement (main plots: biosolids/compost vs. non-amended control; sub-plot: plant type). Tacoma site treatment included a Class A biosolids mix (TAGRO) with dolomite. The Seattle site was amended with Cedar-Grove Compost (CGC) plus dolomite. Efficacy of biosolids/compost amendment in reducing Pb and As concentrations was evaluated using root, leafy, and fruit vegetables. Soil Pb and As bioaccessibility were also evaluated. Food chain transfer of Pb and As in vegetables due to surface contamination of produce samples were evaluated on the basis of cleaning procedures. A laboratory incubation study and a controlled greenhouse experiment were conducted on soils collected from the Tacoma site. Effectiveness of addition of laboratory synthesized ferrihydrite (Fh: iron oxyhydroxide) and TAGRO mix, each alone or in combination were screened and tested on the Pb and As co-contaminated Tacoma soil. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy studies of Pb and As were conducted on incubation study samples to understand treatment-induced Pb- and As-speciation changes. Dilution of soil Pb (10 to 23%) and As (12 to 25%) were observed for biosolids amendment at the Tacoma site, while CGC amendment resulted in 20 to 50% dilution in soil Pb at the Seattle site. Biosolids and CGC amendments reduced Pb concentrations in the vegetables by 50% to 71%. At both sites, Pb concentrations of root vegetables exceeded the MLs established by the Food and Agriculture Organization (FAO) and the World Health Organization (WHO). Arsenic concentrations in vegetables were below an estimated ML and were reduced by 46% to 80% when grown on biosolids amended soils. Laboratory cleaning further reduced Pb and As food-chain transfer in vegetables grown in contaminated urban soils. Laboratory incubation and greenhouse studies showed dissolution of Pb in TAGRO plus Fh, and Pb concentrations in Fh amendments were significantly lower than the other amendments. Bioaccessible Pb and As were low. Significant reductions in bioaccessible As were observed when soils were amended with both TAGRO and Fh. X-ray absorption spectroscopy results indicated that chloropyromorphite-like (stable Pb phosphates) phases were the most dominant Pb species. Arsenic existed mainly as As5+, scorodite (FeAsO4•2H2O)-like species in all the treatments ranging from about 60% (control) to about 70% (TAGRO plus ferrihydrite). Amendments utilizing both biosolids and Fh significantly reduce human exposure risks present in urban soils contaminated with Pb and As.

Page generated in 0.0308 seconds