• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 19
  • 16
  • 5
  • 1
  • Tagged with
  • 84
  • 62
  • 45
  • 38
  • 26
  • 24
  • 17
  • 15
  • 14
  • 14
  • 14
  • 13
  • 13
  • 12
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Developing a one-semester course in forensic chemical science for university undergraduates

Salem, Roberta Sue January 1900 (has links)
Doctor of Philosophy / Curriculum and Instruction Programs / Tweed R. Ross / John R. Staver / The purpose of this study was to research, develop and validate a one-semester course for the general education of university undergraduates in forensic chemical education. The course outline was developed using the research and development (R&D) methodology recommended by Gall, Borg, and Gall, (2003) and Dick and Carey, (2001) through a three step developmental cycle. Information was gathered and analyzed through review of literature and proof of concept interviews, laying the foundation for the framework of the course outline. A preliminary course outline was developed after a needs assessment showed need for such a course. Professors expert in the area of forensic science participated in the first field test of the course. Their feedback was recorded, and the course was revised for a main field test. Potential users of the guide served as readers for the main field test and offered more feedback to improve the course.
52

Just-in-time teaching in undergraduate physics courses: implementation, learning, and perceptions

Dwyer, Jessica Hewitt January 1900 (has links)
Doctor of Philosophy / Curriculum and Instruction Programs / N. Sanjay Rebello / Regardless of discipline, a decades-long battle has ensued within nearly every classroom in higher education: instructors getting students to come to class prepared to learn. In response to this clash between teacher expectations and frequent student neglect, a group of four physics education researchers developed a reformed instructional strategy called Just-in-Time Teaching (JiTT). This dissertation investigates the following three areas: 1) the fidelity with which undergraduate physics instructors implement JiTT, 2) whether student performance predicts student perception of their instructor’s fidelity of JiTT implementation, and 3) whether student perception of their instructor’s fidelity of JiTT implementation correlates with student views of their physics course. A blend of quantitative data (e.g., students grades, inventory scores, and questionnaire responses) are integrated with qualitative data (e.g., individual faculty interviews, student focus group discussions, and classroom observations). This study revealed no statistically significant relationship between instructors who spent time on a predefined JiTT critical component and their designation as a JiTT user or non-user. While JiTT users implemented the pedagogy in accordance with the creators’ intended ideal vision, many also had trouble reconciling personal concerns about their role as a JiTT adopter and the anticipated demand of the innovation. I recommend that this population of faculty members can serve as a JiTT model for other courses, disciplines, and/or institutions. Student performance was not a predictor of student perception instructor fidelity of JiTT implementation. Additionally, the majority of students in this study reported they read their textbook prior to class and that JiTT assignments helped them prepare for in-class learning. I found evidence that exposure to the JiTT strategy may correlate with a more favorable student view of their physics course. Finally, according to students, favorable JiTT implementation occurred when instructors reviewed all questions contained within the JiTT assignment during class and when instructors clearly connected JiTT questions to the textbook reading, lesson discussion, and other assignments. The impact of this work rests in its possibility to set the stage for future education studies on the fidelity of implementation of other research-based instructional strategies in various disciplines and how they affect student performance and perceptions.
53

Using geography to help teach history: dual-encoding history lesson plans

Tabor, Lisa Kay January 1900 (has links)
Master of Arts / Department of Geography / John A. Harrington Jr / Analysis of polling documents indicates how little most Americans know about the world. Geography education is the key to offsetting geographic illiteracy. Fortunately programs designed to improve K-12 geography education are growing in number and strength. How can we teach more and better geography within the school system? Given the dominant role of history in the K-12 social studies curriculum, use of the psychological theory of dual-encoding to integrate geography and history lesson planning is one approach to bring more geography into the classroom. As part of Kansas Geographic Alliance programmatic activity, Kansas history and geography standards, with emphasis on the tested standards, were assessed to identify candidate themes for development of dual-encoded educational units and associated lesson plans. Three workshops were delivered to share these dual-encoded units and lesson plans. The workshops were for education faculty, teachers getting in-service professional development, and for a group of pre-service teachers in a social studies methods class. Attendees at the workshops provided assessment and feedback of the material. Based on informal comments and written responses from the workshop attendees, it is concluded that dual-encoding will enable considerable progress in geography education. Not only will the knowledge provided demonstrate the impact and significance of geography to history teachers and their students, but dual-encoded lessons will advance teacher content and pedagogical knowledge, and most importantly students will learn both geography and history better.
54

Étude des conceptions alternatives et des processus de raisonnement des étudiants de chimie du niveau collégial sur la molécule, la polarité et les phénomènes macroscopiques

Cormier, Caroline 11 1900 (has links)
La chimie est un sujet difficile étant donné ses concepts nombreux et souvent peu intuitifs. Mais au-delà de ces difficultés d’ordre épistémologique, l’apprentissage de la chimie peut être en péril lorsqu’il s’appuie sur des fondations instables, mêlées de conceptions alternatives. Les conceptions alternatives sont les représentations internes, tacites, des étudiants, qui sont en désaccord avec la théorie scientifiquement acceptée. Leur présence dans leur esprit peut nuire à la compréhension conceptuelle, et elle peut mener les étudiants à expliquer le comportement de la matière incorrectement et à faire des prédictions inexactes en chimie. Les conceptions alternatives sont réputées répandues et difficiles à repérer dans un cadre traditionnel d’enseignement. De nombreuses conceptions alternatives en chimie ont été mises en lumière par différents groupes de chercheurs internationaux, sans toutefois qu’une telle opération n’ait jamais été réalisée avec des étudiants collégiaux québécois. Le système d’éducation postsecondaire québécois représentant un contexte unique, une étude des difficultés particulières de ces étudiants était nécessaire pour tracer un portrait juste de la situation. De plus, des chercheurs proposent aujourd’hui de ne pas faire uniquement l’inventaire des conceptions, mais de s’attarder aussi à étudier comment, par quel processus, elles mènent à de mauvaises prédictions ou explications. En effet, ils soutiennent que les catalogues de conceptions ne peuvent pas être facilement utilisés par les enseignants, ce qui devrait pourtant être la raison pour les mettre en lumière : qu’elles soient prises en compte dans l’enseignement. Toutefois, aucune typologie satisfaisante des raisonnements et des conceptions alternatives en chimie, qui serait appuyée sur des résultats expérimentaux, n’existe actuellement dans les écrits de recherche. Plusieurs chercheurs en didactique de la chimie suggèrent qu’une telle typologie est nécessaire et devrait rendre explicites les modes de raisonnement qui mettent en jeu ces conceptions alternatives. L’explicitation du raisonnement employé par les étudiants serait ainsi la voie permettant de repérer la conception alternative sur laquelle ce raisonnement s’appuie. Le raisonnement est le passage des idées tacites aux réponses manifestes. Ce ne sont pas toutes les mauvaises réponses en chimie qui proviennent de conceptions alternatives : certaines proviennent d’un manque de connaissances, d’autres d’un agencement incorrect de concepts pourtant corrects. Comme toutes les sortes de mauvaises réponses d’étudiants sont problématiques lors de l’enseignement, il est pertinent de toutes les considérer. Ainsi, ces préoccupations ont inspiré la question de recherche suivante : Quelles conceptions alternatives et quels processus de raisonnement mènent les étudiants à faire de mauvaises prédictions en chimie ou à donner de mauvaises explications du comportement de la matière? C’est pour fournir une réponse à cette question que cette recherche doctorale a été menée. Au total, 2413 étudiants ont participé à la recherche, qui était divisée en trois phases : la phase préliminaire, la phase pilote et la phase principale. Des entrevues cliniques ont été menées à la phase préliminaire, pour explorer les conceptions alternatives des étudiants en chimie. Lors de la phase pilote, des questionnaires à choix multiples avec justification ouverte des réponses ont été utilisés pour délimiter le sujet, notamment à propos des notions de chimie les plus pertinentes sur lesquelles concentrer la recherche et pour mettre en lumière les façons de raisonner des étudiants à propos de ces notions. La phase principale, quant à elle, a utilisé le questionnaire à deux paliers à choix multiples « Molécules, polarité et phénomènes » (MPP) développé spécifiquement pour cette recherche. Ce questionnaire a été distribué aux étudiants via une adaptation de la plateforme Web ConSOL, développée durant la recherche par le groupe de recherche dont fait partie la chercheuse principale. Les résultats montrent que les étudiants de sciences de la nature ont de nombreuses conceptions alternatives et autres difficultés conceptuelles, certaines étant très répandues parmi leur population. En particulier, une forte proportion d’étudiants croient que l’évaporation d’un composé entraîne le bris des liaisons covalentes de ses molécules (61,1 %), que tout regroupement d’atomes est une molécule (78,9 %) et que les atomes ont des propriétés macroscopiques pareilles à celles de l’élément qu’ils constituent (66,0 %). D’un autre côté, ce ne sont pas toutes les mauvaises réponses au MPP qui montrent des conceptions alternatives. Certaines d’entre elles s’expliquent plutôt par une carence dans les connaissances antérieures (par exemple, lorsque les étudiants montrent une méconnaissance d’éléments chimiques communs, à 21,8 %) ou par un raisonnement logique incomplet (lorsqu’ils croient que le seul fait de posséder des liaisons polaires rend nécessairement une molécule polaire, ce qu’on observe chez 24,1 % d’entre eux). Les conceptions alternatives et les raisonnements qui mènent à des réponses incorrectes s’observent chez les étudiants de première année et chez ceux de deuxième année du programme de sciences, dans certains cas avec une fréquence diminuant entre les deux années, et dans d’autres, à la même fréquence chez les deux sous-populations. Ces résultats permettent de mitiger l’affirmation, généralement reconnue dans les écrits de recherche, selon laquelle les conceptions alternatives sont résistantes à l’enseignement traditionnel : selon les résultats de la présente recherche, certaines d’entre elles semblent en effet se résoudre à travers un tel contexte d’enseignement. Il demeure que plusieurs conceptions alternatives, carences dans les connaissances antérieures de base et erreurs de raisonnement ont été mises en lumière par cette recherche. Ces problèmes dans l’apprentissage mènent les étudiants collégiaux à faire des prédictions incorrectes du comportement de la matière, ou à expliquer ce comportement de façon incorrecte. Au regard de ces résultats, une réflexion sur l’enseignement de la chimie au niveau collégial, qui pourrait faire une plus grande place à la réflexion conceptuelle et à l’utilisation du raisonnement pour la prédiction et l’explication des phénomènes étudiés, serait pertinente à tenir. / The difficulties found in learning Chemistry are mostly ascribed to the fact that it comprises many complex and counter-intuitive concepts. But beyond these epistemological challenges, learning chemistry can be in jeopardy when it relies on learners’ unstable foundations mixed with alternative conceptions. Alternative conceptions are tacit internal representations that students hold in disagreement with scientifically accepted theories. The presence of alternative conceptions in students’ minds might harm their conceptual understanding leading them to wrongly explain the behaviour of matter and to make incorrect predictions in chemistry. Alternative conceptions are recognised as widespread and difficult to identify in a traditional educational setting. Many alternative conceptions in chemistry have been identified by different groups of researchers in international settings, but such an operation has never been carried out with Quebec college students. As Quebec’s post-secondary education system represents a unique context, a study of the particular difficulties of students in this system was necessary to draw an accurate picture of the situation. Furthermore, researchers presently suggest not only to list such alternative conceptions, but also to explore by what processes they lead to wrong predictions or explanations. Researchers indeed argue that mere lists of alternative conceptions cannot be easily used by teachers, who should be the target audience for these results if they are to take into account alternative conceptions in their teaching. However, no satisfactory typology of reasoning processes and alternative conceptions in chemistry exists today in the research literature. Several researchers in chemistry education suggest that such a typology is needed and should render explicit the reasoning processes involving these alternative conceptions. Explicitation of the reasoning used by the students while performing a task in chemistry would be the way to identify the alternative conception on which this reasoning is based. Reasoning is viewed as the process that proceeds from implicit ideas to explicit answers. Not all wrong answers in chemistry come from alternative conceptions: some come from a lack of knowledge, other from logical errors. Since all types of wrong answers from students are problematic during teaching, it is relevant to consider them all. Thus, these concerns have inspired the following research question: What alternative conceptions and modes of reasoning lead students to make poor predictions in chemistry or to give wrong explanations of the behavior of matter? This doctoral research was conducted to provide an answer to this question. In total, 2,413 students enrolled in Science programmes in Québec’s college (postsecondary pre-university) system were involved in this research, which was divided into three phases: preliminary phase, pilot phase and main phase. Clinical interviews were conducted in the preliminary phase to explore chemistry students’ alternative conceptions. During the pilot phase, multiple-choice questions with open-ended justification were used to delimit the chemistry topics to be studied and to highlight ways of reasoning that students use. The main phase, for its part, used the two-tier “Molecules, Polarity and Phenomena” questionnaire (MPP) developed specifically for this research. The questionnaire was distributed to students via an adaptation of the Consol Web platform, developed by the research group of the principal investigator of this doctoral study. The results show that Science students hold several alternative designs, some of which are quite widespread among the population. In particular, a high proportion of students believe that evaporation causes the breaking of covalent bonds of the molecules (61.1 %), that all atom groups are molecules (78.9 %) and that atoms have similar macroscopic properties as the element (66.0 %). On the other hand, not all bad answers in the MPP show alternative conceptions. Some of them are rather explained by a deficiency in prior knowledge (for example, when students show a lack of knowledge of common chemical elements, 21.8 %) or an incomplete logical reasoning (when they believe the mere possession of polar bonds necessarily makes a molecule polar, which is observed in 24.1% of them). Alternative conceptions and reasoning that lead to incorrect answers are found among first-year and second-year students in the Science program, in some cases with decreasing frequency between the two years, and in others, at the same frequency in both subpopulations. These results mitigate the statement generally found in the research literature, that alternative conceptions are resistant to traditional teaching: according to the results of this research, some of them seem to actually be resolved through such a teaching context. The fact remains, however, that several alternative conceptions, deficiencies in basic prior knowledge and reasoning errors have been highlighted by this research. These learning problems lead college students to make incorrect predictions about the behaviour of matter, or to explain this behaviour incorrectly. In view of these results, a reflection on the teaching of chemistry at the college level, placing a greater emphasis on conceptual thinking and the use of reasoning for the prediction and explanation of the studied phenomena, should be considered.
55

La cohérence conceptuelle d’étudiants collégiaux en mécanique newtonienne et en métrologie

Périard, Martin 12 1900 (has links)
Cette thèse porte sur l’évaluation de la cohérence du réseau conceptuel démontré par des étudiants de niveau collégial inscrits en sciences de la nature. L’évaluation de cette cohérence s’est basée sur l’analyse des tableaux de Burt issus des réponses à des questionnaires à choix multiples, sur l’étude détaillée des indices de discrimination spécifique qui seront décrits plus en détail dans le corps de l’ouvrage et sur l’analyse de séquences vidéos d’étudiants effectuant une expérimentation en contexte réel. Au terme de ce projet, quatre grands axes de recherche ont été exploré. 1) Quelle est la cohérence conceptuelle démontrée en physique newtonienne ? 2) Est-ce que la maîtrise du calcul d’incertitude est corrélée au développement de la pensée logique ou à la maîtrise des mathématiques ? 3) Quelle est la cohérence conceptuelle démontrée dans la quantification de l’incertitude expérimentale ? 4) Quelles sont les procédures concrètement mise en place par des étudiants pour quantifier l’incertitude expérimentale dans un contexte de laboratoire semi-dirigé ? Les principales conclusions qui ressortent pour chacun des axes peuvent se formuler ainsi. 1) Les conceptions erronées les plus répandues ne sont pas solidement ancrées dans un réseau conceptuel rigide. Par exemple, un étudiant réussissant une question sur la troisième loi de Newton (sujet le moins bien réussi du Force Concept Inventory) montre une probabilité à peine supérieure de réussir une autre question sur ce même sujet que les autres participants. De nombreux couples de questions révèlent un indice de discrimination spécifique négatif indiquant une faible cohérence conceptuelle en prétest et une cohérence conceptuelle légèrement améliorée en post-test. 2) Si une petite proportion des étudiants ont montré des carences marquées pour les questions reliées au contrôle des variables et à celles traitant de la relation entre la forme graphique de données expérimentales et un modèle mathématique, la majorité des étudiants peuvent être considérés comme maîtrisant adéquatement ces deux sujets. Toutefois, presque tous les étudiants démontrent une absence de maîtrise des principes sous-jacent à la quantification de l’incertitude expérimentale et de la propagation des incertitudes (ci-après appelé métrologie). Aucune corrélation statistiquement significative n’a été observée entre ces trois domaines, laissant entendre qu’il s’agit d’habiletés cognitives largement indépendantes. Le tableau de Burt a pu mettre en lumière une plus grande cohérence conceptuelle entre les questions de contrôle des variables que n’aurait pu le laisser supposer la matrice des coefficients de corrélation de Pearson. En métrologie, des questions équivalentes n’ont pas fait ressortir une cohérence conceptuelle clairement démontrée. 3) L’analyse d’un questionnaire entièrement dédié à la métrologie laisse entrevoir des conceptions erronées issues des apprentissages effectués dans les cours antérieurs (obstacles didactiques), des conceptions erronées basées sur des modèles intuitifs et une absence de compréhension globale des concepts métrologiques bien que certains concepts paraissent en voie d’acquisition. 4) Lorsque les étudiants sont laissés à eux-mêmes, les mêmes difficultés identifiées par l’analyse du questionnaire du point 3) reviennent ce qui corrobore les résultats obtenus. Cependant, nous avons pu observer d’autres comportements reliés à la mesure en laboratoire qui n’auraient pas pu être évalués par le questionnaire à choix multiples. Des entretiens d’explicitations tenus immédiatement après chaque séance ont permis aux participants de détailler certains aspects de leur méthodologie métrologique, notamment, l’emploi de procédures de répétitions de mesures expérimentales, leurs stratégies pour quantifier l’incertitude et les raisons sous-tendant l’estimation numérique des incertitudes de lecture. L’emploi des algorithmes de propagation des incertitudes a été adéquat dans l’ensemble. De nombreuses conceptions erronées en métrologie semblent résister fortement à l’apprentissage. Notons, entre autres, l’assignation de la résolution d’un appareil de mesure à affichage numérique comme valeur de l’incertitude et l’absence de procédures d’empilement pour diminuer l’incertitude. La conception que la précision d’une valeur numérique ne peut être inférieure à la tolérance d’un appareil semble fermement ancrée. / This thesis evaluates the coherence of the conceptual network demonstrated by college students in life and applied sciences. This evaluation was based on the analysis of Burt tables issuing from multiple choice questionnaires, on the creation and careful examination of a novel tool, the matrix of specific discrimination coefficients, which will be described in the main text, and on the qualitative analysis of actual laboratory work of students doing an experimentation. At the completion of this project, four research axis have been explored. 1) What is the conceptual coherence demonstrated in Newtonian mechanics? 2) Is the mastery of uncertainty quantification related to the development of logical thinking or to mathematical competency? 3) What is the conceptual coherence demonstrated in the quantification of experimental uncertainty? 4) What are the concrete procedures utilized by students to quantify experimental uncertainty in a semi-directed laboratory context? The main conclusions that emerged from each axis of research can be summerized as follow. 1) The most prevalent erroneous conceptions are not solidly set in a rigid conceptual network. For example, a student successful in a question about Newton’s third law (the most difficult subject of the Force Concept Inventory) is just slightly more likely to succeed in another related question than the other participants. Many pairs of questions displays a negative specific discrimination coefficient demonstrating a weak conceptual coherence in pre-test and a somewhat ameliorated conceptual coherence in post-test. 2) If a small proportion of students has demonstrated marked deficiencies in questions related with control of variable and in those related to the relationship between the graphical display of experimental data and a mathematical model, the majority of students can be considered as adequately mastering those subjects. However, almost every student demonstrated a lack of mastery of concepts underlying the quantification of experimental uncertainty and the propagation of uncertainty (heretofore referred to as metrology). No statistically significant correlation has been observed between the three main topics suggesting that they are largely independent cognitive abilities. Burt table has demonstrated a greater degree of conceptual coherence between control of variables questions than suggested by Pearson correlation coefficients. Equivalent question in the topic of metrology did not permit to demonstrate a clear conceptual coherence. 3) Analysis of a questionnaire entirely devoted to metrology has shown erroneous conceptions caused by prior learning (didactical obstacles), erroneous conceptions based on intuitive models and a lack of global comprehension of metrological concepts although some appear to be almost acquired. 4) When doing real experiments in semi-directed laboratory, students demonstrated the same difficulty identified in the questionnaire of 3) which could interpreted as corroborating previously obtaine results. However, many unanticipated behaviors related to measurement were observed that could not have been anticipated solely by analyzing answers in the multiple-choice questionnaire. Interviews immediately following each semi-directed laboratory permitted the participants to detail certain aspects of their metrological methodology. Most notably, the use of repeated measurement strategies, their « spontaneous » strategies to quantify uncertainty, and their explanation of numerical estimates of reading uncertainties. Overall, uncertainty propagation algorithms were adequately employed. Many erroneous metrological conceptions seem to resist strongly to be modified by learning. Among others, assignation of the resolution of a digital scale as the uncertainty value and the lack of stacking strategies to diminish uncertainty. The conception that a numerical value cannot be more precise than the tolerance of an instrument seems firmly set.
56

Conception et développement d’un environnement d’apprentissage sur les transformations d’énergies et leurs rendements

Boutros, Wissam 01 1900 (has links)
Le domaine des énergies est au cœur des préoccupations technologiques, politiques et économiques de notre société moderne. Ce domaine nécessite une compréhension minimale du concept scientifique de l’énergie. Elle est selon nous essentielle à toute formation citoyenne. Nous avons dans un premier temps, à partir de considérations théoriques et pratiques, examiné pourquoi ce domaine si important dans notre société technologique est si peu abordé dans le cursus scolaire québécois? Pourquoi se contente-t-on d’un enseignement théorique et discursif de ce concept? Pourquoi, au contraire de tout enseignement scientifique, n’a-t-on pas envisagé de situations d’apprentissages en laboratoire pour l’étude des énergies? Dans un deuxième temps, nous avons proposé une idée de solution concrète et réaliste pour répondre à l’ensemble de ces questions. Une solution qui invite les élèves à s’investir de manière constructive dans des activités de laboratoire afin de s’approprier ces concepts. Pour ce faire, nous avons conçu des variables globales énergies qui ont permis aux élèves de les mesurer et d’expérimenter facilement des transformations énergétiques. Cette recherche de développement technologique en éducation consiste donc à profiter des nouveaux développements technologiques de l’informatique et de la micro-électronique pour concevoir, réaliser et mettre à l’essai un environnement informatisé d’apprentissage en laboratoire pour les sciences et la technologie. Par ce que l’énergie est au confluent de trois domaines, cet environnement a été conçu pour supporter dans une même activité l’apprentissage des mathématiques, des sciences et de la technologie. Cette intégration recommandée par les nouveaux programmes est, selon nous, essentielle à la compréhension des concepts liés à l’énergie et à ses transformations. Par cette activité d’apprentissage multidisciplinaire, nous voulons, via une approche empirique et concrète, aborder ces problèmes de transformations énergétiques afin de donner aux élèves la capacité de perfectionner les prototypes qu’ils construisent en technologie de manière à améliorer leurs performances. Nous avons montré que cette démarche technoscientifique, assimilable à la conception d’un schème expérimental en sciences, favorise la compréhension des concepts liés aux énergies et à leurs transformations. Ce développement, ouvert à l’investigation scientifique, apporte un bénéfice didactique, non seulement, pour des enseignants en exercices et des étudiants-maîtres, mais aussi pour des élèves de 5ème année du niveau secondaire, ce que nous avons démontré dans une mise à l’essai empirique. / The energy sector is at the heart of the concerns technological, political and economic modern society. This area requires a basic understanding of the scientific concept of energy. It is our opinion essential to any citizen training. We initially, from theoretical and practical considerations, examined why this area is so important in our technological society is so little discussed in the Quebec curriculum? Why do we merely a theoretical and discursive concept? Why, contrary to all scientific education, have we not considered learning situations in the laboratory for the study of energy? In a second step, we proposed an idea of practical and realistic solution to address all these questions. A solution that invites students to engage constructively in laboratory activities to appropriate these concepts. To do this, we have developed global variables energies that allowed students to experiment and measure energy transformations easily. This quest for technological development in education is therefore to take advantage of new technological developments in computing and microelectronics to design, build and test a computerized environment learning laboratory for science and technology. With this energy is at the confluence of three domains, this environment has been designed to support the same activity in the learning of mathematics, science and technology. This integration recommended by the new programs we believe is essential to the understanding of concepts related to energy and its transformations. For this learning activity multidisciplinary, we want, via an empirical and practical address these issues of energy transformations in order to give students the ability to develop the prototypes they build technology to improve their performance. We have shown that this approach techno, similar to the design of an experimental design in science, promotes understanding of concepts related to energy and their transformations. This educational development, open to scientific investigation, provides educational benefit, not only for practicing teachers and student teachers, but also for students from the fifth year of high school, we have shown in a setting tested empirically.
57

Integrating Science, Technology, Society and Environment (STSE) into physics teacher education: Pre-service Teachers' Perceptions and Challenges

MacLeod, Katarin Alinta 17 December 2012 (has links)
Although STSE has recently received attention in educational research, policy, and science curricula development, fewer strides have been made in moving theory into practice. There are many examples of STSE-based and issues-based teaching in science at the elementary and secondary levels, which can be found in the literature (Alsop, Bencze, & Pedretti, 2005; Hodson, 1993, 2000; Pedretti & Hodson, 1995), yet little has focused specifically on physics education. This doctoral thesis will examine pre-service physics teachers’ beliefs and perceptions, challenges and tensions which influence their adoption of STSE education in the context of a pre-service physics education course (Curriculum and Instruction in Physics Education at the B.Ed level). An interpretive case study design as described by Merriam (1988) has been employed for this research (Merriam, 1988; Novodvorsky, 2006). The specific phenomena this case study examined and explored were the pre-service physics teachers’ beliefs and perceptions, challenges and tensions influencing their adoption of physics curricula that explicitly emphasizes an STSE orientation to physics education. The pre-service physics teachers’ evolution of perceptions and attitudes show growth in the areas of curricula understanding and implementation issues, potential student concerns, and general fit of the subject within the context of a student’s learning journey. This study contributes to our understanding of the challenges pre-service physics teachers face when considering teaching physics through an STSE lens, and provides some implications for both pre-service and in-service teacher education.
58

An Investigation of the Impact of Mentoring on Students' Decisions to Pursue Professions in Medicine/Health Sciences: A Sociocultural Framework for Multicultural Science Education

Clarke, Leroy 24 February 2011 (has links)
In the 21st Century and beyond, it is clear that science and technology will be a catalyst in strengthening economic competitiveness and fostering social cohesion. However, some minoritized students are not engaged in science or related careers in science such as medicine. This study addresses the systemic issue of equitable and accessible science education as a requisite for career acquisition such as medicine. Mentoring is presented as a sociocultural participatory activity for engaging students in science learning. The purpose of this study is to assess the University of Toronto Faculty of Medicine Summer Mentorship Program (SMP) and to use the data to theorize on the mentoring phenomenon. In 1994, the SMP was established as a means of ameliorating the traditionally low participation of Aboriginal and Black students in medicine and other health sciences. For the first 10 years (1994 – 2004), 250 participants enrolled in the program. Recently, ten past mentees of the program matriculated into various medical schools (5 in the Class of 2008 at the University of Toronto, this is significant, as the norm is usually 0 or at most 2). The study utilized a qualitative approach, requiring the collection of semi-structured one-on-one interview data and an interpretive phenomenological methodology to evaluate the data. There was an increased level of school and community involvement when students returned to high school and an increased awareness of the academic and career choices available to protégés. Mentees indicated that the influence of the SMP followed them much further than the end of the summer and considered it to be an important and defining moment in their educational journey. Communication could be improved so that mentors get a sense of their own impact and for professional development. Recommendations include conducting a study more focused on the impact of the SMP on Aboriginal students who completed the program. Finally, from a theoretical perspective, further work is recommended in order to fine-tune the proposed Mentoring Oriented Teaching and Learning Strategy (MOTALS) framework that incorporates students as natives in a welcoming community of science practice rather than immigrants in a strange land of non-contextual science knowledge.
59

An Investigation of the Impact of Mentoring on Students' Decisions to Pursue Professions in Medicine/Health Sciences: A Sociocultural Framework for Multicultural Science Education

Clarke, Leroy 24 February 2011 (has links)
In the 21st Century and beyond, it is clear that science and technology will be a catalyst in strengthening economic competitiveness and fostering social cohesion. However, some minoritized students are not engaged in science or related careers in science such as medicine. This study addresses the systemic issue of equitable and accessible science education as a requisite for career acquisition such as medicine. Mentoring is presented as a sociocultural participatory activity for engaging students in science learning. The purpose of this study is to assess the University of Toronto Faculty of Medicine Summer Mentorship Program (SMP) and to use the data to theorize on the mentoring phenomenon. In 1994, the SMP was established as a means of ameliorating the traditionally low participation of Aboriginal and Black students in medicine and other health sciences. For the first 10 years (1994 – 2004), 250 participants enrolled in the program. Recently, ten past mentees of the program matriculated into various medical schools (5 in the Class of 2008 at the University of Toronto, this is significant, as the norm is usually 0 or at most 2). The study utilized a qualitative approach, requiring the collection of semi-structured one-on-one interview data and an interpretive phenomenological methodology to evaluate the data. There was an increased level of school and community involvement when students returned to high school and an increased awareness of the academic and career choices available to protégés. Mentees indicated that the influence of the SMP followed them much further than the end of the summer and considered it to be an important and defining moment in their educational journey. Communication could be improved so that mentors get a sense of their own impact and for professional development. Recommendations include conducting a study more focused on the impact of the SMP on Aboriginal students who completed the program. Finally, from a theoretical perspective, further work is recommended in order to fine-tune the proposed Mentoring Oriented Teaching and Learning Strategy (MOTALS) framework that incorporates students as natives in a welcoming community of science practice rather than immigrants in a strange land of non-contextual science knowledge.
60

La cohérence conceptuelle d’étudiants collégiaux en mécanique newtonienne et en métrologie

Périard, Martin 12 1900 (has links)
Cette thèse porte sur l’évaluation de la cohérence du réseau conceptuel démontré par des étudiants de niveau collégial inscrits en sciences de la nature. L’évaluation de cette cohérence s’est basée sur l’analyse des tableaux de Burt issus des réponses à des questionnaires à choix multiples, sur l’étude détaillée des indices de discrimination spécifique qui seront décrits plus en détail dans le corps de l’ouvrage et sur l’analyse de séquences vidéos d’étudiants effectuant une expérimentation en contexte réel. Au terme de ce projet, quatre grands axes de recherche ont été exploré. 1) Quelle est la cohérence conceptuelle démontrée en physique newtonienne ? 2) Est-ce que la maîtrise du calcul d’incertitude est corrélée au développement de la pensée logique ou à la maîtrise des mathématiques ? 3) Quelle est la cohérence conceptuelle démontrée dans la quantification de l’incertitude expérimentale ? 4) Quelles sont les procédures concrètement mise en place par des étudiants pour quantifier l’incertitude expérimentale dans un contexte de laboratoire semi-dirigé ? Les principales conclusions qui ressortent pour chacun des axes peuvent se formuler ainsi. 1) Les conceptions erronées les plus répandues ne sont pas solidement ancrées dans un réseau conceptuel rigide. Par exemple, un étudiant réussissant une question sur la troisième loi de Newton (sujet le moins bien réussi du Force Concept Inventory) montre une probabilité à peine supérieure de réussir une autre question sur ce même sujet que les autres participants. De nombreux couples de questions révèlent un indice de discrimination spécifique négatif indiquant une faible cohérence conceptuelle en prétest et une cohérence conceptuelle légèrement améliorée en post-test. 2) Si une petite proportion des étudiants ont montré des carences marquées pour les questions reliées au contrôle des variables et à celles traitant de la relation entre la forme graphique de données expérimentales et un modèle mathématique, la majorité des étudiants peuvent être considérés comme maîtrisant adéquatement ces deux sujets. Toutefois, presque tous les étudiants démontrent une absence de maîtrise des principes sous-jacent à la quantification de l’incertitude expérimentale et de la propagation des incertitudes (ci-après appelé métrologie). Aucune corrélation statistiquement significative n’a été observée entre ces trois domaines, laissant entendre qu’il s’agit d’habiletés cognitives largement indépendantes. Le tableau de Burt a pu mettre en lumière une plus grande cohérence conceptuelle entre les questions de contrôle des variables que n’aurait pu le laisser supposer la matrice des coefficients de corrélation de Pearson. En métrologie, des questions équivalentes n’ont pas fait ressortir une cohérence conceptuelle clairement démontrée. 3) L’analyse d’un questionnaire entièrement dédié à la métrologie laisse entrevoir des conceptions erronées issues des apprentissages effectués dans les cours antérieurs (obstacles didactiques), des conceptions erronées basées sur des modèles intuitifs et une absence de compréhension globale des concepts métrologiques bien que certains concepts paraissent en voie d’acquisition. 4) Lorsque les étudiants sont laissés à eux-mêmes, les mêmes difficultés identifiées par l’analyse du questionnaire du point 3) reviennent ce qui corrobore les résultats obtenus. Cependant, nous avons pu observer d’autres comportements reliés à la mesure en laboratoire qui n’auraient pas pu être évalués par le questionnaire à choix multiples. Des entretiens d’explicitations tenus immédiatement après chaque séance ont permis aux participants de détailler certains aspects de leur méthodologie métrologique, notamment, l’emploi de procédures de répétitions de mesures expérimentales, leurs stratégies pour quantifier l’incertitude et les raisons sous-tendant l’estimation numérique des incertitudes de lecture. L’emploi des algorithmes de propagation des incertitudes a été adéquat dans l’ensemble. De nombreuses conceptions erronées en métrologie semblent résister fortement à l’apprentissage. Notons, entre autres, l’assignation de la résolution d’un appareil de mesure à affichage numérique comme valeur de l’incertitude et l’absence de procédures d’empilement pour diminuer l’incertitude. La conception que la précision d’une valeur numérique ne peut être inférieure à la tolérance d’un appareil semble fermement ancrée. / This thesis evaluates the coherence of the conceptual network demonstrated by college students in life and applied sciences. This evaluation was based on the analysis of Burt tables issuing from multiple choice questionnaires, on the creation and careful examination of a novel tool, the matrix of specific discrimination coefficients, which will be described in the main text, and on the qualitative analysis of actual laboratory work of students doing an experimentation. At the completion of this project, four research axis have been explored. 1) What is the conceptual coherence demonstrated in Newtonian mechanics? 2) Is the mastery of uncertainty quantification related to the development of logical thinking or to mathematical competency? 3) What is the conceptual coherence demonstrated in the quantification of experimental uncertainty? 4) What are the concrete procedures utilized by students to quantify experimental uncertainty in a semi-directed laboratory context? The main conclusions that emerged from each axis of research can be summerized as follow. 1) The most prevalent erroneous conceptions are not solidly set in a rigid conceptual network. For example, a student successful in a question about Newton’s third law (the most difficult subject of the Force Concept Inventory) is just slightly more likely to succeed in another related question than the other participants. Many pairs of questions displays a negative specific discrimination coefficient demonstrating a weak conceptual coherence in pre-test and a somewhat ameliorated conceptual coherence in post-test. 2) If a small proportion of students has demonstrated marked deficiencies in questions related with control of variable and in those related to the relationship between the graphical display of experimental data and a mathematical model, the majority of students can be considered as adequately mastering those subjects. However, almost every student demonstrated a lack of mastery of concepts underlying the quantification of experimental uncertainty and the propagation of uncertainty (heretofore referred to as metrology). No statistically significant correlation has been observed between the three main topics suggesting that they are largely independent cognitive abilities. Burt table has demonstrated a greater degree of conceptual coherence between control of variables questions than suggested by Pearson correlation coefficients. Equivalent question in the topic of metrology did not permit to demonstrate a clear conceptual coherence. 3) Analysis of a questionnaire entirely devoted to metrology has shown erroneous conceptions caused by prior learning (didactical obstacles), erroneous conceptions based on intuitive models and a lack of global comprehension of metrological concepts although some appear to be almost acquired. 4) When doing real experiments in semi-directed laboratory, students demonstrated the same difficulty identified in the questionnaire of 3) which could interpreted as corroborating previously obtaine results. However, many unanticipated behaviors related to measurement were observed that could not have been anticipated solely by analyzing answers in the multiple-choice questionnaire. Interviews immediately following each semi-directed laboratory permitted the participants to detail certain aspects of their metrological methodology. Most notably, the use of repeated measurement strategies, their « spontaneous » strategies to quantify uncertainty, and their explanation of numerical estimates of reading uncertainties. Overall, uncertainty propagation algorithms were adequately employed. Many erroneous metrological conceptions seem to resist strongly to be modified by learning. Among others, assignation of the resolution of a digital scale as the uncertainty value and the lack of stacking strategies to diminish uncertainty. The conception that a numerical value cannot be more precise than the tolerance of an instrument seems firmly set.

Page generated in 0.0248 seconds