• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 16
  • 16
  • 10
  • 1
  • Tagged with
  • 107
  • 48
  • 30
  • 29
  • 25
  • 25
  • 25
  • 24
  • 20
  • 18
  • 14
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Hydrolases on fumed silica: conformational stability studies to enable biocatalysis in organic solvents

Cruz Jimenez, Juan Carlos January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Peter H. Pfromm / One area of considerable importance in modern biotechnology is the preparation of highly active and selective enzyme based biocatalysts for applications in organic solvents. A major challenge is posed by the tendency of enzymes to cluster when suspended in organic solvents. Because the clusters obstruct the transport of substrates to the active site of the enzyme, the observed activity is often severely reduced. Over the past two decades, many strategies have been proposed to mitigate this problem. We have tackled this major hurdle by devising an immobilization strategy that utilizes fumed silica as carrier for the enzyme molecules. Fumed silica is a non-porous nanoparticulated fractal aggregate with unique absorptive properties. The enzyme/fumed silica preparation is formed in two steps. The buffered enzyme molecules are physically adsorbed on the fumed silica and then lyophilized. This protocol was shown to be successful with two enzymes of industrial relevance, Candida antarctica Lipase B (CALB) and subtilisin Carlsberg. The maximum observed catalytic activity in hexane reached or even exceeded commercial immobilizates and nonbuffer salt based preparations. The results demonstrated that catalytic activity has an intricate relationship with the nominal surface coverage (%SC) of the support by the enzyme molecules. s. Carlsberg exhibited an ever increasing activity as more surface area was provided per enzyme molecule. The activity leveled off when a sparse surface population was reached. CALB showed a maximum in catalytic activity at an intermediate surface coverage with steep decreases at both lower and higher surface coverage. It was shown that this maximum results from the presence of three distinct surface loading regimes after lyophilization: 1. a low surface coverage where opportunities for multi-attachment to the surface likely lead to detrimental conformational changes, 2. an intermediate surface coverage where interactions with neighboring proteins and the surface help to maintain a higher population of catalytically competent enzyme molecules, and 3. a multi-layer coverage where mass transfer limitations lead to a decrease in the apparent catalytic activity. Conformational stability analyses with both fluorescence and CD spectroscopy showed evidence that these regimes are most likely formed during the adsorption step of our protocol. A low conformational stability region was detected at low surface coverage while adsorbates with highly stable enzyme ensembles were observed at high surface coverage. Secondary structural analysis of the lyophilized nanobiocatalysts with FTIR confirmed a substantial decrease in the alpha-helical components at low surface coverage. In summary, the work presented here traces the phenomenological observation of the catalytic behavior of a nanobiocatalyst to molecular-level: enzyme-enzyme and enzyme-support interactions, which are specific to the intricate properties of the enzyme molecules.
42

Excitation energy transfer and charge separation dynamics in photosystem II: hole-burning study

Acharya, Khem January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Ryszard J. Jankowiak / The constituents of oxygen-evolving photosystem II core complexes—antenna proteins (CP43 and CP47) and reaction center (RC)—have been the subject of many studies over the years. However, the various issues related to electronic structure, including the origin/composition of the lowest-energy traps, origin of various emission bands, excitation energy transfer (EET), primary charge separation (CS) processes and pigment site energies remain yet to be fully resolved. Exploiting our state-of-the-art techniques such as low-T absorption, fluorescence, and hole burning (HB) spectroscopies, we resolved some of the issues particularly related to CP47 and isolated RC protein complexes. For example, we demonstrated that the fluorescence origin band maximum (~695 nm) originates from the lowest-energy state ~693 nm of intact CP47. In intact CP47 in contrast to destablished protein complexes, the band (~695 nm) does not shift in the temperature range of 5–77 K unless hole-burning takes place. We also studied a large number of isolated RC preparations from spinach, and wild-type Chlamydomonas reinhardtii (at different levels of intactness), as well as its mutant (D2-L209H), in which the active branch pheophytin (PheoD1) has been genetically replaced with chlorophyll a (Chl a). We showed that the Qx-/Qy-region site-energies of PheoD1 and PheoD2 are ~545/680 nm and ~541.5/670 nm, respectively, in good agreement with our previous assignment [Jankowiak et al. J. Phys. Chem. B 2002, 106, 8803]. Finally, we demonstrated that the primary electron donor in isolated algal RCs from C. reinhardtii (referred to as RC684) is PD1 and/or PD2 of the special Chl pair (analogous to PL and PM, the special BChl pair of the bacterial RC) and not ChlD1. However, the latter can also be the primary electron donor (minor pathway) in RC684 depending on the realization of the energetic disorder. We further demonstrate that transient HB spectra in RC684 are very similar to P+QA - PQA spectra measured in PSII core, providing the first evidence that RC684 represent intact isolated RC that also possesses the secondary electron acceptor, QA. In summary, a new insight into possible charge separation pathways in isolated PSII RCs has been provided.
43

Structural and functional studies of interactions between [beta]-1,3-glucan and the N-terminal domains of [beta]-1,3-glucan recognition proteins involved in insect innate immunity

Dai, Huaien January 1900 (has links)
Doctor of Philosophy / Department of Biochemistry / Ramaswamy Krishnamoorthi / Insect [beta]-1,3-glucan recognition protein ([beta]GRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Delineation of mechanistic details of these processes may help develop strategies to control insect-borne diseases and economic losses. Multi-dimensional nuclear magnetic resonance (NMR) techniques were employed to solve the solution structure of the Indian meal moth (Plodia interpunctella) [beta]GRP N-terminal domain (N-[beta]GRP), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. This is the first determined three-dimensional structure of N-[beta]GRP, which adopts an immunoglobulin fold. Addition of laminarin, a [beta]-1,3 and [beta]-1,6 link-containing glucose polysaccharide (∼6 kDa) that activates the proPO pathway, to N-[beta]GRP results in the loss of NMR cross-peaks from the backbone [subscript]1[subscript]5N-[subscript]1H groups of the protein, suggesting the formation of a large complex. Analytical ultracentrifugation (AUC) studies of formation of the N-[beta]GRP:laminarin complex show that ligand binding induces self-association of the protein-carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (∼102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to submicromolar concentrations. The structural model thus derived from this study for the N-[beta]GRP:laminarin complex in solution differs from the one in which a single N-[beta]GRP molecule has been proposed to bind to a triple-helical form of laminarin on the basis of a X-ray crystal structure of the N-[beta]GRP:laminarihexaose complex. AUC studies and phenoloxidase activation measurements made with designed mutants of N-[beta]GRP indicate that electrostatic interactions between the ligand-bound protein molecules contribute to the stability of the N-[beta]GRP:laminarin complex and that a decreased stability results in a reduction of proPO activation. These novel findings suggest that ligand-induced self-association of the [beta]GRP:[beta]-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the pathogen recognition signal. In the case of the homolog of GNBPA2 from Anopheles gambiae, the malaria-causing Plasmodium carrier, multiligand specificity was characterized, suggesting a functional diversity of the immunoglobulin domain structure.
44

Nanomechanics of Barnacle Proteins and Multicomponent Lipid Bilayers Studied by Atomic Force Microscopy

Sullan, Ruby May Arana 23 February 2011 (has links)
Owing to atomic force microscopy’s (AFM) high-resolution in both imaging and force spectroscopy, it is very successful in probing not only structures, but also nanomechanics of biological samples in solution. In this thesis, the nanomechanical properties of lipid bilayers of biological relevance and proteins of the barnacle adhesive were examined using AFM indentation, AFM-based force mapping, and single-molecule pulling experiments. Through high-resolution AFM-based force mapping, the self-organized structures exhibited in phase-segregated supported lipid bilayers consisting of dioleoylphosphatidylcholine / egg sphingomyelin / cholesterol (DEC) in the absence and presence of ceramide (DEC-Ceramide) were directly correlated with their breakthrough forces, elastic moduli, adhesion, and bilayer thickness. Results were presented as two-dimensional visual maps. The highly stable ceramide-enriched domains in DEC-Ceramide bilayers and the effect of different levels of cholesterol as well as of diblock copolymers, on the nanomechanical stability of the model systems studied were further examined. For the proteins of the barnacle adhesive, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and chemical staining with amyloid-selective dyes, in addition to AFM imaging, indentation, and pulling experiments were performed to study the structure and nanomechanics of the polymerized barnacle glue. Nanoscale structures exhibiting rod-shaped, globular, and irregularly shaped morphologies were observed in the bulk barnacle cement by AFM. SEM coupled with energy dispersive x-ray (EDX) makes evident the organic nature of the rod-shaped nanoscale structures while FTIR spectroscopy on the bulk cement gave signatures of β-sheet and random coil conformations. Indentation data yielded higher elastic moduli for the rod-shaped structures as compared to the other structures in the bulk cement. Single molecule AFM force-extension curves on the matrix of the bulk cement often exhibited a periodic sawtooth-like profile, observed in both extend and retract portions of the force curve. Rod-shaped structures stained with amyloid protein-selective dyes (Congo Red and Thioflavin-T) revealed that about 5% of the bulk cement are amyloids.
45

A Study of Electrogenic Transient and Steady-state Cotransporter Kinetics: Investigations with the Na+/Glucose Transporter SGLT1

Krofchick, Daniel 31 August 2012 (has links)
Significant advancements in the field of membrane protein crystallography have provided in recent years invaluable images of transporter structures. These structures, however, are static and require complementary kinetic insight to understand how their mechanisms work. Electrophysiological studies of transporters permit the high quality kinetic measurements desired, but there are significant difficulties involved in analyzing and interpreting the data. Current methods allow a variety of kinetic parameters to be measured but there is a disconnect between these parameters and a fundamental understanding of the carrier. The intent of this research was to contribute new tools for studying the electrogenic kinetics of membrane transport proteins, to understand the link between these kinetics and the carrier, and to ultimately understand the mechanisms involved in transport. In this vein, two projects are explored covering two important kinetic time domains, transient and steady-state. The transient project studies the conformational changes of the unloaded carrier of SGLT1 through a multi-exponential analysis of the transient currents. Crystal structures have potentially identified a gated rocker-switch mechanism and the transient kinetics are used to support and study this kinetically. A protocol taking advantage of multiple holding potentials is used to measure the decay time constants and charge movements for voltage jumps from both hyperpolarizing and depolarizing directions. These directional measurements provide insight into the arrangement of the observed transitions through directional inequalities in charge movement, by considering the potential for a slow transition to hide a faster one. Ultimately, four carrier decays are observed that align with the gated rocker-switch mechanism and can be associated one-to-one with the movement of a gate and pore on each side of the membrane. The steady-state project considers a general theoretical model of transporter cycling. Recursive patterns are identified in the steady-state velocity equation that lead to a broad understanding of its geometric properties as a function of voltage and substrate concentration. This results in a simple phenomenological method for characterizing the I–V curves and for measuring the kinetics of rate limiting patterns in the loop, which we find are the basic structures revealed by the steady-state velocity.
46

Structural and Biophysical Studies of the Role of Stromal Interaction Molecules STIM1 and STIM2 in Initiating Store-operated Calcium Entry

Zheng, Le 29 July 2010 (has links)
Store-operated calcium entry (SOCE) is the major Ca2+ entry pathway in most non-excitable cells maintaining prolonged elevation of cytosolic Ca2+ levels required for gene transcription. SOCE is activated by the loss of endoplasmic reticulum (ER) Ca2+ through stromal interaction molecules (STIM), ER-membrane associated Ca2+ sensors. In humans, STIM1 and STIM2 share 65% sequence similarity but differentially regulate SOCE. Biophysical studies on the luminal Ca2+-binding region suggests that STIM2 EF-SAM is more stable than STIM1. The NMR structure of Ca2+-loaded STIM2 EF-SAM determined in this work suggests a more stable SAM and a tighter EF-hand and SAM interaction in STIM2 may be account for its higher stability. Chimeric swapping of the EF-hand and SAM domains generates an unstable ES211. Introducing ES211 into cherryFP-STIM1 shows constitutive puncta which activate SOCE independent of ER depletion. The current work demonstrates that the instability of the EF-SAM plays an important role in regulating SOCE initiation.
47

Spectroscopic Investigations of the Photophysics of Cryptophyte Light-harvesting

Dinshaw, Rayomond 21 November 2012 (has links)
The biological significance of photosynthesis is indisputable as it is necessary for nearly all life on earth. Photosynthesis provides chemical energy for plants, algae, and bacteria, while heterotrophic organisms rely on these species as their ultimate food source. The initial step in photosynthesis requires the absorption of sunlight to create electronic excitations. Light-harvesting proteins play the functional role of capturing solar radiation and transferring the resulting excitation to the reaction centers where it is used to carry out the chemical reactions of photosynthesis. Despite the wide variety of light-harvesting protein structures and arrangements, most light-harvesting proteins are able to utilize the captured solar energy for charge separation with near perfect quantum efficiency. This thesis will focus on understanding the energy transfer dynamics and photophysics of a specific subset of light-harvesting antennae known as phycobiliproteins. These proteins are extracted from cryptophyte algae and are investigated using steady-state and ultrafast spectroscopic techniques.
48

Structural and Biophysical Studies of the Role of Stromal Interaction Molecules STIM1 and STIM2 in Initiating Store-operated Calcium Entry

Zheng, Le 29 July 2010 (has links)
Store-operated calcium entry (SOCE) is the major Ca2+ entry pathway in most non-excitable cells maintaining prolonged elevation of cytosolic Ca2+ levels required for gene transcription. SOCE is activated by the loss of endoplasmic reticulum (ER) Ca2+ through stromal interaction molecules (STIM), ER-membrane associated Ca2+ sensors. In humans, STIM1 and STIM2 share 65% sequence similarity but differentially regulate SOCE. Biophysical studies on the luminal Ca2+-binding region suggests that STIM2 EF-SAM is more stable than STIM1. The NMR structure of Ca2+-loaded STIM2 EF-SAM determined in this work suggests a more stable SAM and a tighter EF-hand and SAM interaction in STIM2 may be account for its higher stability. Chimeric swapping of the EF-hand and SAM domains generates an unstable ES211. Introducing ES211 into cherryFP-STIM1 shows constitutive puncta which activate SOCE independent of ER depletion. The current work demonstrates that the instability of the EF-SAM plays an important role in regulating SOCE initiation.
49

Spectroscopic Investigations of the Photophysics of Cryptophyte Light-harvesting

Dinshaw, Rayomond 21 November 2012 (has links)
The biological significance of photosynthesis is indisputable as it is necessary for nearly all life on earth. Photosynthesis provides chemical energy for plants, algae, and bacteria, while heterotrophic organisms rely on these species as their ultimate food source. The initial step in photosynthesis requires the absorption of sunlight to create electronic excitations. Light-harvesting proteins play the functional role of capturing solar radiation and transferring the resulting excitation to the reaction centers where it is used to carry out the chemical reactions of photosynthesis. Despite the wide variety of light-harvesting protein structures and arrangements, most light-harvesting proteins are able to utilize the captured solar energy for charge separation with near perfect quantum efficiency. This thesis will focus on understanding the energy transfer dynamics and photophysics of a specific subset of light-harvesting antennae known as phycobiliproteins. These proteins are extracted from cryptophyte algae and are investigated using steady-state and ultrafast spectroscopic techniques.
50

A Study of Electrogenic Transient and Steady-state Cotransporter Kinetics: Investigations with the Na+/Glucose Transporter SGLT1

Krofchick, Daniel 31 August 2012 (has links)
Significant advancements in the field of membrane protein crystallography have provided in recent years invaluable images of transporter structures. These structures, however, are static and require complementary kinetic insight to understand how their mechanisms work. Electrophysiological studies of transporters permit the high quality kinetic measurements desired, but there are significant difficulties involved in analyzing and interpreting the data. Current methods allow a variety of kinetic parameters to be measured but there is a disconnect between these parameters and a fundamental understanding of the carrier. The intent of this research was to contribute new tools for studying the electrogenic kinetics of membrane transport proteins, to understand the link between these kinetics and the carrier, and to ultimately understand the mechanisms involved in transport. In this vein, two projects are explored covering two important kinetic time domains, transient and steady-state. The transient project studies the conformational changes of the unloaded carrier of SGLT1 through a multi-exponential analysis of the transient currents. Crystal structures have potentially identified a gated rocker-switch mechanism and the transient kinetics are used to support and study this kinetically. A protocol taking advantage of multiple holding potentials is used to measure the decay time constants and charge movements for voltage jumps from both hyperpolarizing and depolarizing directions. These directional measurements provide insight into the arrangement of the observed transitions through directional inequalities in charge movement, by considering the potential for a slow transition to hide a faster one. Ultimately, four carrier decays are observed that align with the gated rocker-switch mechanism and can be associated one-to-one with the movement of a gate and pore on each side of the membrane. The steady-state project considers a general theoretical model of transporter cycling. Recursive patterns are identified in the steady-state velocity equation that lead to a broad understanding of its geometric properties as a function of voltage and substrate concentration. This results in a simple phenomenological method for characterizing the I–V curves and for measuring the kinetics of rate limiting patterns in the loop, which we find are the basic structures revealed by the steady-state velocity.

Page generated in 0.0229 seconds