141 |
Quantitative Prediction of Non-Local Material and Transport Properties Through Quantum Scattering ModelsPrasad Sarangapani (5930231) 16 January 2020 (has links)
<div> Challenges in the semiconductor industry have resulted in the discovery of a plethora of promising materials and devices such as the III-Vs (InGaAs, GaSb, GaN/InGaN) and 2D materials (Transition-metal dichalcogenides [TMDs]) with wide-ranging applications from logic devices, optoelectronics to biomedical devices. Performance of these devices suffer significantly from scattering processes such as polar-optical phonons (POP), charged impurities and remote phonon scattering. These scattering mechanisms are long-ranged, and a quantitative description of such devices require non-local scattering calculations that are computationally expensive. Though there have been extensive studies on coherent transport in these materials, simulations are scarce with scattering and virtually non-existent with non-local scattering. </div><div> </div><div>In this work, these scattering mechanisms with full non-locality are treated rigorously within the Non-Equilibrium Green's function (NEGF) formalism. Impact of non-locality on charge transport is assessed for GaSb/InAs nanowire TFETs highlighting the underestimation of scattering with local approximations. Phonon, impurity scattering, and structural disorders lead to exponentially decaying density of states known as Urbach tails/band tails. Impact of such scattering mechanisms on the band tail is studied in detail for several bulk and confined III-V devices (GaAs, InAs, GaSb and GaN) showing good agreement with existing experimental data. A systematic study of the dependence of Urbach tails with dielectric environment (oxides, charged impurities) is performed for single and multilayered 2D TMDs (MoS2, WS2 and WSe2) providing guideline values for researchers. </div><div><br></div><div>Often, empirical local approximations (ELA) are used in the literature to capture these non-local scattering processes. A comparison against ELA highlight the need for non-local scattering. A physics-based local approximation model is developed that captures the essential physics and is computationally feasible.</div>
|
142 |
Quantum phenomena for next generation computingChinyi Chen (8772923) 30 April 2020 (has links)
<div>With the transistor dimensions scaling down to a few atoms, quantum phenomena - like quantum tunneling and entanglement - will dictate the operation and performance of the next generation of electronic devices, post-CMOS era. While quantum tunneling limits the scaling of the conventional transistor, Tunneling Field Effect Transistor (TFET) employs band-to-band tunneling for the device operation. This mechanism can reduce the sub-threshold swing (S.S.) beyond the Boltzmann's limit, which is fundamentally limited to 60 mV/dec in a conventional Si-based metal-oxide-semiconductor field-effect transistor (MOSFET). A smaller S.S. ensures TFET operation at a lower supply voltage and, therefore, at lesser power compared to the conventional Si-based MOSFET.</div><div><br></div><div>However, the low transmission probability of the band-to-band tunneling mechanism limits the ON-current of a TFET. This can be improved by reducing the body thickness of the devices i.e., using 2-Dimensional (2D) materials or by utilizing heterojunction designs. In this thesis, two promising methods are proposed to increase the ON-current; one for the 2D material TFETs, and another for the III-V heterojunction TFETs.</div><div><br></div><div>Maximizing the ON-current in a 2D material TFET by determining an optimum channel thickness, using compact models, is presented. A compact model is derived from rigorous atomistic quantum transport simulations. A new doping profile is proposed for the III-V triple heterojunction TFET to achieve a high ON-current. The optimized ON-current is 325 uA/um at a supply voltage of 0.3 V. The device design is optimized by atomistic quantum transport simulations for a body thickness of 12 nm, which is experimentally feasible.</div><div> </div><div>However, increasing the device's body thickness increases the atomistic quantum transport simulation time. The simulation of a device with a body thickness of over 12 nm is computationally intensive. Therefore, approximate methods like the mode-space approach are employed to reduce the simulation time. In this thesis, the development of the mode-space approximation in modeling the triple heterojunction TFET is also documented.</div><div><br></div><div>In addition to the TFETs, quantum computing is an emerging field that utilizes quantum phenomena to facilitate information processing. An extra chapter is devoted to the electronic structure calculations of the Si:P delta-doped layer, using the empirical tight-binding method. The calculations agree with angle-resolved photoemission spectroscopy (ARPES) measurements. The Si:P delta-doped layer is extensively used as contacts in the Phosphorus donor-based quantum computing systems. Understanding its electronic structure paves the way towards the scaling of Phosphorus donor-based quantum computing devices in the future.</div>
|
143 |
Field-effect transistor based biosensing of glucose using carbon nanotubes and monolayer MoS2Ullberg, Nathan January 2019 (has links)
As part of the EU SmartVista project to develop a multi-modal wearable sensor for health diagnostics, field-effect transistor (FET) based biosensors were explored, with glucose as the analyte, and carbon nanotubes (CNTs) or monolayer MoS2 as the semiconducting sensing layer. Numerous arrays of CNT-FETs and MoS2-FETs were fabricated by photolithographic methods and packaged as integrated circuits. Functionalization of the sensing layer using linkers and enzymes was performed, and the samples were characterized by atomic force microscopy, scanning electron microscopy, optical microscopy, and electrical measurements. ON/OFF ratios of 102 p-type and < 102 n-type were acheived, respectively, and the work helped survey the viability of realizing such sensors in a wearable device. / EU Horizon 2020 - SmartVista (825114)
|
144 |
Teoretické studium dvojrozměrných magnetických materiálů / Theoretical Modeling of Two-dimensional Magnetic MaterialsHe, Junjie January 2017 (has links)
Two dimensional (2D) materials, such as graphene, phosphorene and transition metal chalcogenides, have received a great attention in recent years due to their unique physical and chemical properties. A majority of 2D materials is intrinsically non-magnetic, therefore, their applications in spintronics are limited. The design and synthesis of new 2D materials with intrinsic magnetism and high spin-polarization remains a challenge. Computational discovery of new 2D materials with desired magnetic and electronic properties is the subject of this thesis. Using density functional theory with PBE, PBE+U and HSE06 functionals, we have systematically investigated the structure, electronic, magnetic and topological properties of novel 2D materials. Investigated materials include MXenes and layered transition-metal trihalides, both with great potential applications in spintronic devices. Four different classes of materials showing unique magnetic properties were investigated and reported in this thesis. (1) Asymmetrically functionalized MXenes were studied. The coexistence of the fully compensated antiferromagnetic order (zero magnetization) and completely spin-polarized semiconductivity was found for the first time. Moreover, the spin carrier orientation and induced transition from bipolar antiferromagnetic...
|
145 |
Micro and Nano Raman Investigation of Two-Dimensional Semiconductors towards Device ApplicationRahaman, Mahfujur 02 July 2020 (has links)
Recent advances in nanoscale characterization and device fabrications have opened up opportunities for layered semiconductors in nanoelectronics and optoelectronics. Due to strong confinement in monolayer thickness, physical properties of this materials are greatly influenced by parameters such as strain, defects, and doping at the nanoscale. Therefore, understanding the effect of this parameters on layered semiconductors is the prerequisite for any device application. In this doctoral thesis, impact of such parameters on the optical properties of layered semiconductors are studied in nanoscale. MoS2, the most famous transition metal dechalcogenide (TMDC) (n-type semiconductor), and p-type GaSe, a member of metal monochalcogenide (MMC) are investigated in this work. Finally, in outlook, a device made of p-type few layer GaSe and n-type 1L-MoS2 is discussed.
|
146 |
Foundations of topological electrodynamicsTodd F Van Mechelen (9721421) 15 December 2020 (has links)
<div>Over the last decade, Dirac matter has become one of the most prominent fields of research in contemporary material science due to the incredibly rich physics of the Dirac equation. Notable examples are the Dirac cones in graphene, Weyl points in TaAs, and gapless edge states in Bi<sub>2</sub>Te<sub>3</sub>. These unique phases of matter are intimately related to the topological structure of Dirac fermions. However, it remains an open question if the topological structure of Maxwell's equations predicts yet new phases of matter. This thesis will conclusively answer this question.</div><div><br></div><div>Topological electrodynamics is concerned with the geometry of electromagnetic waves in condensed matter. At the microscopic level, photons couple to the dipole-carrying excitations of a material, such as plasmons and excitons, which hybridize to form new normal modes of the system. The interaction between these bosonic oscillators is the origin of temporal and spatial dispersion in optical response functions like the conductivity tensor. Our main achievement is motivating a global interpretation of these response functions, over all frequencies and wavevectors. This theory led us to the conclusion that there are topological invariants associated with the conductivity tensor itself. In this thesis, we show exactly how to calculate these electromagnetic invariants, in both continuum and lattice theories, to identify unique Maxwellian phases of matter. Magnetohydrodynamic electron fluids in strongly-correlated 2D materials like graphene are the first candidates of this new class of topological phase. The fundamental physical mechanism that gives rise to a topological electromagnetic classification is Hall viscosity which adds a nonlocal component to the Hall conductivity. To study the topological electrodynamics, we propose viscous Maxwell-Chern-Simons theory -- a Lagrangian framework that naturally generates the equations of motion, nonlocal Hall response and the boundary conditions. We demonstrate that nonlocal Hall conductivity is the spin-1 photonic equivalent of dispersive mass and induces precession of bulk photonic skyrmions. Nontrivial photonic skyrmions are associated with Dirac monopoles in the bulk momentum space and a singular Berry gauge. A singular gauge occurs when the photonic mass changes sign. Remarkably, the boundary of this medium supports gapless chiral edge states that are spin-1 helically-quantized and satisfy open boundary conditions.</div>
|
147 |
Measurement and Manipulation of Spins and Magnetism in 2D Materials and Spinel OxidesNewburger, Michael J. January 2021 (has links)
No description available.
|
148 |
Electron Transport in Chalcogenide NanostructuresNilwala Gamaralalage Premasiri, Kasun Viraj Madusanka 28 January 2020 (has links)
No description available.
|
149 |
Knitting quantum knots-Topological phase transitions in Two-Dimensional systemsRadha, Santosh Kumar 07 September 2020 (has links)
No description available.
|
150 |
[pt] NANOTRIBOLOGIA EM GRAFENO E OUTROS MATERIAIS ATOMICAMENTE FINOS / [en] NANOTRIBOLOGY OF GRAPHENE AND OTHER ATOMICALLY THIN MATERIALSFELIPE PTAK LEMOS 28 December 2020 (has links)
[pt] Neste trabalho foi estudado o atrito em escala nanométrica em materiais
atomicamente finos, como o grafeno e os dicalcogenetos de metais de transição
(TMD) como o dissulfeto de molibdênio (MoS2) e o dissulfeto de tungstênio
(WS2). Para tanto, foi utilizado um microscópio de força atômica (AFM), de
modo que uma ponta de nitreto de silício suportada por uma haste (cantiléver)
é deslizada sob a superfície do material em análise, e o atrito é quantificado
de acordo com a deformação lateral da haste. Diferentes parâmetros foram
alterados durante a varredura para verificar suas influências, tais como a força
normal aplicada durante a varredura e a velocidade relativa em que o sistema
ponta-amostra desliza. Parâmetros relativos às superfícies, como número de
camadas, rugosidade e adesão também foram investigados. Com a variação da
velocidade de deslizamneto, verificamos uma dependência linear com o logaritmo
da velocidade, até um ponto de saturação. Esta dependência é amplificada
de acordo com o número de camadas do grafeno, de modo que numa monocamada
essa inclinação é mais acentuada do que nas demais camadas. Usando o
modelo de Prandtl-Tomlinson termicamente ativo, conseguiu-se determinar o
potencial de interação entre a ponta do AFM e a superfície analisada, as forças
críticas em que a saturação do atrito ocorre e a frequência estipulada com que
os eventos de superação da barreira de pontecial acontecem. Com a variação
da força normal aplicada, os resultados mostram que grafeno e MoS2 seguem
o modelo Johnson-Kendall-Roberts (JKR) de mecânica de contato, enquanto
o WS2 segue o modelo Derjaguin-Muller-Toporov (DMT). Para explicar tal
diferença, uma hipótese associada ao efeito piezoelétrico é estipulada. Ademais,
foi observado que a contaminação das superfícies de grafeno por adsorção de
hidrocarbonetos pela exposição ao ar aumenta o atrito medido, e altera sua
relação à carga aplicada. Os estágios iniciais da contaminação foram observados,
e notou-se que esta se propaga da monocamada para as demais camadas
da folha de grafeno, com diferentes taxas de área contaminada por tempo. / [en] In this work, the friction mechanism at the nanoscale of atomically thin
materials such as graphene, transition metal dichalcogenides (TMD) such as
molybdenum disulfide (MoS2) and tungsten disulfide (WS2), and muscovite
mica was studied with the use of an atomic force microscope (AFM). The AFM
scans these materials surfaces with a silicon nitride tip which is attached at the
end of a cantilever. The tips slides through the surface and friction is measured
by the torsional deflection of the cantilever. Parameters such as applied normal
load and sliding speed were varied in order to verify their influences. Surfaces
properties such as number of layers, roughness and tip-sample adhesion were
also analyzed. The sliding speed experiment shows a linear dependence with
the logarithm of the scanning velocity, until friction reaches a saturation
point, where it remains the same even at higher velocities. Such dependence
is amplified with the number of graphene layers, as a monolayer presents a
steeper curve than few layers graphene. The data was fitted using the thermally
active Prandtl-Tomlinson model and the tip-sample interaction potential was
estimated, as well as the critical forces at which friction saturation occurs and
the hop frequency at which a potential barrier is surpassed. In the applied
normal load experiment, results shows that both graphene and MoS2 follow
the Johnson-Kendall-Roberts (JKR) model, while WS2 and mica follows the
Derjaguin-Muller-Toporov (DMT) model. In order to explain the different
behavior in both TMDs samples, a hypothesis associated with the piezoelectric
effect is proposed. Furthermore, the influence of airborne contamination in the
friction of graphene was studied. Results shows that the contact mechanics
is altered due to adsorbed hydrocarbon molecules on the graphene flakes.
Initial stages of contamination shows that it propagates from the monolayer
to subsequent layers, with a different contaminated area over time rate.
|
Page generated in 0.0627 seconds