• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 10
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 168
  • 168
  • 50
  • 36
  • 34
  • 27
  • 24
  • 24
  • 24
  • 24
  • 23
  • 21
  • 19
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Two-Dimensional Conjugated Metal-Organic-Frameworks based on Contorted-Hexabenzocoronene

Jastrzembski, Kamil 10 July 2024 (has links)
To date, most two-dimensional conjugated metal–organic frameworks (2D c-MOFs) are based on planar polycyclic aromatic hydrocarbons (PAHs), which limits the ability to introduce additional substituents to control their properties. This thesis introduces a novel monomer ligand derived from highly substituted, core-twisted hexahydroxy-hexa-cata-benzocoronenes (6X-6OH-cHBCs), resulting in a new class of wavy 2D c-MOFs. The structural rigidity and self-complementary nature of the c-HBC ligand makes it a valuable monomer for constructing these novel 2D c-MOFs. Despite the wavy structure, effective conjugation between layers was achieved. This led to the formation of electronically conductive materials, as demonstrated by 6F-cHBC-Cu, which exhibited a conductivity of 1.82∙10-2 S/cm. Furthermore, the wavy motif of the c-HBC ligand promoted extended crystal growth in the z-direction. This was demonstrated by the formation of several micrometer-long single crystals of 6F-cHBC-Cu. The monomers were synthesized through a flexible three-step process, allowing for the incorporation of various substituents or functional groups, thus enabling control over ligand symmetry. This process enabled the synthesis of monomers with diverse symmetries: C6 symmetry (12OH-cHBC), C3 symmetry (6X-6OH-cHBC), and asymmetric monomers (e.g., 3F-6OH-cHBC). This structural variety allowed for systematic investigations into structure-property relationships, offering valuable insights into how monomer design influences the resulting MOF properties. The homologous 6X-cHBC-Cu MOF series (X = H, F, Cl, Br) illustrated that both the electron-withdrawing effect and the size of the substituent significantly impact crystallinity. This in turn enhances fundamental properties such as electronic conductivity, charge carrier mobility, accessible pore size, thermal stability, and morphology. Reactivity trends for the synthesized monomers were also established, showing that strong electron-withdrawing groups like fluorine or hydroxyl directly correlate with enhanced monomer reactivity, optimizing synthetic conditions. Incorporating fluorine into the monomer structure significantly improved the resulting MOF properties, providing a valuable design strategy for future monomers. Finally, this research demonstrated that wavy 2D c-MOFs can rival traditional flat ligands in terms of crystallinity and electronic properties, such as conductivity and charge carrier mobility, thereby expanding the potential for novel 2D c-MOF members.
102

Croissance et réactivité du silicène / Growth and reactivity of silicene

Tchalala, Mohamed Rachid 24 October 2014 (has links)
L’objet de cette thèse est l’étude de la croissance de silicène sur des substrats d’argent,ainsi que l’étude de sa réactivité vis-à-vis de l’oxygène. La croissance a été réalisée sous ultra-vide et contrôlée par spectroscopie d’électrons Auger (AES) et par diffraction d’électrons lents (LEED). Les structures obtenues et leurs réactivités à l’oxygène ont été étudiées par microscopie à champ proche (STM et nc-AFM) et par spectroscopie de photoémission résolue en angle (ARPES). Nous avons étudié la structure interne des nano-rubans de silicène auto-assemblés sur un substrat d’Ag(110). Sur Ag(111) nous obtenons un feuillet de silicène qui présente différentes structures en fonction de la température du substrat. L’étude de la réactivité des rubans et des feuillets a montré que le silicène formé sur substrat d’argent est relativement stable vis-à-vis de l’oxygène ce qui ouvre des perspectives de fonctionnalisation du silicène. La dernière partie de cette thèse concerne la synthèse de feuillets de silicium par voie chimique. Nous avons mis au point une nouvelle méthode prometteuse de synthèse chimique qui nous a permis de synthétiser des feuillets de silicium de structure graphitique. / The objective of this thesis is the study of the growth of silicene on silver substrates as well as its reactivity towards the oxygen. The growth was performed under ultra-high vacuum and controlled by Auger electrons spectroscopy (AES) and low energy electrons diffraction (LEED). The obtained structures and their relativities towards the oxygen were studied by near field microscopy (STM and nc-AFM) and by angle resolved electrons photoemission spectroscopy (ARPES). We have studied the internal structure of the selfassembled silicene nanoribbons on Ag(110) substrate. On Ag(111), we have obtained a silicene sheet presenting different structures versus the temperature of the substrate. The reactivity of silicene nanoribbons and sheets grown on silver show that silicene is relatively stable towards the oxygen which opens a new perspectives of functionalization of the silicene. The last part of this thesis concerns the synthesis of silicone sheets by chemical process. We have develpped a new promising process of chemical synthesis which allowed us to synthesize silicon sheets with graphitic structure.
103

Van der Waals heterostructures : fabrication, mechanical and electronic properties

Khestanova, Ekaterina January 2018 (has links)
The fast progress in the exploration of 2D materials such as graphene became possible due to development of fabrication techniques that allowed these materials to be protected from e.g. undesirable doping and gave rise to new functionalities realized within van der Waals heterostructures. Attracted by van der Waals interaction the constituent layers of such heterostructures preserve their exceptional electronic quality and for example in graphene allow for high electron mobility to be achieved. However, the studies of atomically thin layers such as NbSe2 that exhibit metallic behavior have been impeded by their reactivity and hence oxidation during exposure to ambient or oxidizing agents such as solvents. In this thesis, the existing heterostructure assembly technique was improved by the introduction of exfoliation and re-stacking by a fully motorized system placed in an inert atmosphere. This approach allowed us to overcome the problem of environmental degradation and create Hall bars and planar tunnel junctions from atomically thin superconducting NbSe2. Furthermore, this versatile approach allowed us to study the thickness dependence of the normal and superconducting state transport properties of NbSe2, uncovering the reduction of the superconducting energy gap and transition temperature in the thinnest samples. On the other hand, 2D materials being just 1-3 atoms thick represent an ultimate example of a membrane - thin but laterally extended object. Consisting of such atomically thin membranes the van der Waals heterostructures can be used for purposes other than the studies of electronic transport. In this work, ubiquitous bubbles occurring during van der Waals heterostructure assembly are employed as a tool to explore 2D materials' mechanical properties and mutual adhesion. This allowed us to measure Young's modulus of graphene and other 2D materials under 1-2% strain and deduce the internal pressure that can reach up to 1 GPa in sub-nanometer size bubbles.
104

Investigation of Electronic and Opto-electronic Properties of Two-dimensional Layers (2D) of Copper Indium Selenide Field Effect Transistors

Patil, Prasanna Dnyaneshwar 01 August 2017 (has links)
Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility µFE ≈ 36 cm^2 V^-1 s^-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of ~ 10^4 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility µFE can be increased from ~ 3 cm^2 V^-1 s^-1 in SiO2 back gated device to ~ 18 cm^2 V^-1 s^-1 in top gated electrolyte devices. Similarly, subthreshold swing can be improved from ~ 30 V/dec to 0.2 V/dec and on/off ratio can be increased from 10^2 to 10^3 by using an electrolyte as a top gate. These FETs were also tested as phototransistors. Our photo-response characterization indicate photo-responsivity ~ 32 A/W with external quantum efficiency exceeding 10^3 % when excited with a 658 nm wavelength laser at room temperature. Our phototransistor also exhibit response times ~ tens of µs with specific detectivity (D*) values reaching ~ 10^12 Jones. The CuIn7Se11 phototransistor properties can be further tuned & enhanced by applying a back gate voltage along with increased source drain bias. For example, photo-responsivity can gain substantial improvement up to ~ 320 A/W upon application of a gate voltage (Vg = 30 V) and/or increased source-drain bias. The photo-responsivity exhibited by these photo detectors are at least an order of magnitude better than commercially available conventional Si based photo detectors coupled with response times that are orders of magnitude better than several other family of layered materials investigated so far. Further photocurrent generation mechanisms, effect of traps is discussed in detail.
105

Magnetotransport in graphene and related two-dimensional systems

Huang, Nathaniel Jian January 2016 (has links)
This thesis describes studies on two-dimensional electron gases (2DEG) in graphene and related 2D systems. Magnetotransport investigations specifically in graphene and its bilayer system are demonstrated in detail, while the experimental techniques presented in this thesis are widely applicable to a large variety of other 2D materials. Chapter 1 gives an introduction and motivation for the principal topic presented in this thesis, with a general introduction to carbon nano-materials and an overview of the current state of graphene-related research and technological development (RTD). Chapter 2 establishes a basic theoretical framework which is essential for interpreting the results presented in this thesis, starting with the crystal and electronic band structures of graphene and its bilayer, followed by high magnetic fields effects on transport properties in these 2D systems. Chapter 3 details the experimental methods directly related to the presented work. The next three chapters report experimental results of three specific magnetotransport studies. Chapter 4 reports the disorder effects on epitaxial graphene in the vicinity of the Dirac point. Quadratic increases of carrier densities with temperature are found to be due to intrinsic thermal excitation combined with electron-hole puddles induced by charged impurities. It is also shown that the minimum conductivity increases with increasing disorder strength, in good agreement with quantum-mechanical numerical calculations. Chapter 5 reports measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to a magnetic field dependent charge transfer process from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels this process is modelled in excellent agreement with experimental results. In Chapter 6, energy relaxation of hot carriers in graphene bilayer systems is investigated from measurements on Shubnikovde Haas oscillations and weak localisation. The hot-electron energy loss rate follows the predicted T<sup>4</sup> power-law at carrier temperatures from 1.4 up to about 100 K, due to electron-acoustic phonon interactions. Comparisons are made between graphene monolayer and bilayer systems and a much stronger carrier density dependence of the energy loss rate is found in the bilayer system. This thesis concludes with a summary of the most important findings of the topics that have been discussed. The significance and limitations of the present research are listed. Some suggestions and outlook are given for possible improvements and interesting areas of future research and development.
106

Hétérostructures de van der Waals à base de Nitrure / Nitride based van der Waals heterostructures

Henck, Hugo 21 September 2017 (has links)
Le sujet de cette thèse est à l’interface entre l’étude de composés à base de nitrure et des structures émergeantes formées par les matériaux bidimensionnels (2D) d’épaisseur atomique. Ce travail se consacre sur l’hybridation des propriétés électriques et optiques des semi-conducteurs à larges bandes interdites que sont les nitrures et des performances mécaniques, électriques et optiques des matériaux lamellaires, récemment isolé à l’échelle d’un plan atomique, qui sont aujourd’hui considérées avec attention aux regards de futures applications et d’études plus fondamentales. En particulier, une étude des propriétés électroniques, optiques et structurelles d’hétérostructures composées de plusieurs matériaux lamellaires et d’interfaces entre matériaux 2D et 3D a été réalisé par des moyens de microscopie et de spectroscopie tel que la spectroscopie Raman, de photoémission et d’absorption.Ce manuscrit traite dans un premier temps des propriétés structurelles et électroniques du nitrure de bore hexagonal (h-BN), matériau isolant aux propriétés optiques exotiques et essentiel dans la future intégration de ce type de matériaux 2D permettant de mettre en valeur leurs propriétés intrinsèques.En utilisant le graphène comme substrat les problèmes de mesures par photoémission rencontrés pour des matériaux isolant ont pu être surmonté dans le cas du h-BN et une étude des défauts structurels a pu être réalisée. Par conséquent, les premières mesures directes de la structure de bande électronique de plusieurs plans de h-BN sont présentées dans ce manuscrit.Dans un second temps, une approche d’intégration de ces matériaux 2D différente a été étudiée en formant une hétérostructure 2D/3D. L’interface de cette hétérojonction, composée d’un plan de disulfure de molybdène (MoS2) de dopage intrinsèque N associé à 300 nm de nitrure de gallium (GaN) intentionnellement dopé P à l’aide de magnésium, a été caractérisée. Un transfert de charge du GaN vers le MoS2 a pu être identifié suggérant un contrôle des propriétés électroniques de ce type de structure par le choix de matériaux.Ces travaux ont permis de révéler les diagrammes de bandes électroniques complet des structures étudiées a pu être obtenu permettant une meilleur compréhension de ces systèmes émergeants. / This thesis is at the interface between the study of nitride based compounds and the emerging structures formed by atomically thin bi-dimensional (2D) materials. This work consists in the study of the hybridization of the properties of large band gap materials from the nitride family and the mechanical, electronic and optical performances of layered materials, recently isolated at the monolayer level, highly considered due to their possible applications in electronics devices and fundamental research. In particular, a study of electronics and structural properties of stacked layered materials and 2D/3D interfaces have been realised with microscopic and spectroscopic means such as Raman, photoemission and absorption spectroscopy.This work is firstly focused on the structural and electronic properties of hexagonal boron nitride (h-BN), insulating layered material with exotic optical properties, essential in in the purpose of integrating these 2D materials with disclosed performances. Using graphene as an ideal substrate in order to enable the measure of insulating h-BN during photoemission experiments, a study of structural defects has been realized. Consequently, the first direct observation of multilayer h-BN band structure is presented in this manuscript. On the other hand, a different approach consisting on integrating bi-dimensional materials directly on functional bulk materials has been studied. This 2D/3D heterostructure composed of naturally N-doped molybdenum disulphide and intentionally P-doped gallium nitride using magnesium has been characterised. A charge transfer from GaN to MoS2 has been observed suggesting a fine-tuning of the electronic properties of such structure by the choice of materials.In this work present the full band alignment diagrams of the studied structure allowing a better understanding of these emerging systems.
107

Spintronique dans les matériaux 2D : du graphène au h-BN / Spintronics with 2D materials : from graphene to h-BN

Piquemal, Maëlis 26 March 2018 (has links)
Aujourd'hui se pose une question fondamentale sur le futur de l'électronique actuelle. De plus en plus, des circuits hybrides intégrant de nouvelles fonctionnalités sont fabriqués. On envisage même, à plus long terme, des circuits basés sur une technologie différente de l'approche CMOS utilisée actuellement. Une de ces technologies est la spintronique qui tire profit du spin, degré de liberté supplémentaire de l'électron. Elle a rapidement fait ses preuves par le passé dans le stockage non volatile binaire (disques durs) et s'oriente aujourd'hui vers de nouvelles mémoires magnétiques ultra-performantes et basse consommation les MRAMs (Magnetic Random Access Memories). En parallèle, une nouvelle catégorie de matériaux à fort potentiel a émergé : les matériaux bidimensionnels (2D). Ces matériaux, dont le fer de lance est le graphène (une couche d'un atome d'épaisseur de graphite), offrent de nouvelles propriétés inégalées. Leur combinaison via la fabrication d'hétérostructures et la capacité d'avoir un contrôle de leur épaisseur à l'échelle atomique pourrait devenir un atout majeur en électronique et plus particulièrement en spintronique. L'objectif de cette thèse a été l'étude de l'intégration et la démonstration du potentiel en termes de fonctionnalités et de performances de ces nouveaux matériaux 2D au sein de jonctions tunnel magnétiques (MTJs), le dispositif prototype de la spintronique. Au cours de cette thèse, nous avons poursuivi les travaux initiés au laboratoire sur l'intégration dans des MTJs du graphène obtenu via une méthode de dépôt CVD (dépôt chimique en phase vapeur) directe sur l’électrode ferromagnétique inférieure. Nous avons démontré que les propriétés de filtrage en spin et de membrane protectrice contre l'oxydation de l'électrode ferromagnétique (FM) sous-jacente s'étendaient à une unique couche de graphène. Par ailleurs, nous avons aussi pu étudier et améliorer significativement l'amplitude du filtrage en spin et du signal de magnétorésistance observé via l'optimisation des procédés de croissance et d'intégration et le choix de différentes configurations de matériaux ferromagnétiques (Ni(111), Co...). De forts effets de filtrage de spin ont ainsi pu être observés avec des magnétorésistances allant de -15% à plus de +80%, soit presque trois fois l'état de l'art. En parallèle, nous nous sommes aussi intéressés à un autre matériau 2D, le nitrure de bore hexagonal (h-BN), isolant isomorphe du graphène qui s'apparenterait à une barrière tunnel d'un seul atome d'épaisseur. Afin d’étudier le h-BN dans une MTJ, nous avons décidé d’exploiter à nouveau le principe d’une croissance directe par CVD du matériau 2D sur le matériau FM. Des mesures CT-AFM (Conductive Tip Atomic Force Microscopy) nous ont permis de démontrer les propriétés de barrière tunnel homogène du h-BN ainsi que le contrôle possible de la hauteur de barrière avec le nombre de couches de h-BN. De plus, des mesures électriques et de magnétotransport nous ont permis de confirmer l’intégration réussie de la barrière tunnel h-BN dans notre MTJ. Nous avons pu obtenir les premiers résultats de forte magnétorésistance pour du h-BN avec une amplitude de la magnétorésistance de +50%, plus d'un ordre de grandeur au-dessus de l'état de l'art, révélant le potentiel du h-BN. Nous avons enfin aussi pu démontrer l'importance du couplage entre le h-BN et l'électrode FM offrant un potentiel de contrôle inédit sur les effets de filtrage en spin et allant jusqu'à rendre le h-BN métallique. Lors de cette thèse, nous avons pu montrer que l’intégration du graphène et du h-BN dans des MTJs via la croissance directe par CVD est un procédé privilégié pour tirer pleinement profit de leurs propriétés. Les résultats obtenus de forte magnétorésistance et de filtrage en spin laissent entrevoir le fort potentiel du graphène, du h-BN mais aussi des autres nouveaux matériaux 2D à venir pour les MTJs. Ces études ouvrent une nouvelle voie d’exploration pour les MTJs : les 2D-MTJs. / Nowadays a critical issue is raised concerning the future of current electronics. Increasingly, hybrid circuits with new functionalities are manufactured. A longer term approach is even contemplated with circuits based on a technology different from the one currently used (CMOS technology). One of these envisioned technologies is spintronics, which benefits from the spin properties, the electron additional degree of freedom. Spintronics has quickly proven its worth in the past in the field of non volatile data storing (hard drives) and is today moving towards new fast and ultra-low-power magnetic random access memories the MRAMs. Meanwhile, these last few years, a new category of materials with high potential has emerged : the bidimensional materials (2D). These materials, with graphene (one atomically thick layer of graphite) as the forerunner, provide new unrivaled properties. Their combination in the form of heterostructures and the ability to obtain a control of their thickness at the atomic scale could be a major asset for electronics and more specifically spintronics. The purpose of this thesis has been the study of the integration and the demonstration of the potential in terms of functionalities and performances of these new 2D materials inside the prototypical spintronic device: the magnetic tunnel junction (MTJ). During this thesis, we have pursued the work initiated by the laboratory on the integration of graphene in MTJs with direct CVD deposition method (chemical vapor deposition) on the underlying ferromagnetic electrode. We demonstrated that the spin filtering and protective membrane properties (preventing the oxidation of the underlying ferromagnetic electrode (FM)) observed earlier expand to a graphene monolayer. Furthermore, we have also studied and improved significantly the amplitude of the spin filtering and the magnetoresistance signal observed. This was done thanks to the optimization of the growth process, integration, and choice of the different configurations of ferromagnetic materials in our structures (Ni(111), Co...). High spin filtering effects have been observed as a function of the configurations with magnetoristances ranging from -15% to beyond +80%, which is almost three times the state of the art. Meanwhile, we looked at another 2D material, the hexagonal boron nitride (h-BN), an insulating isomorph of graphene which could be considered as an atomically thin tunnel barrier. In order to study h-BN into a MTJ, we took again advantage of direct CVD growth of the 2D material on a ferromagnet. CT-AFM (Conductive Tip Atomic Force Microscopy) measurements allowed us to demonstrate the homogeneous tunnel barrier properties of h-BN and the possible control of the barrier height with the number of h-BN layers. Simultaneously, electrical and magnetotransport measurement in the complete junction allowed us to confirm the achieved integration of the h-BN tunnel barrier into our MTJ. We have been able to obtain the first results of high magnetoresistance for h-BN with values one order of magnitude beyond the state of the art. A magnetoresistance of +50% has been reached, thanks to the optimization of the growth process revealing the potential of h-BN. We have also been able to show the important role of the coupling between h-BN and the FM electrode offering an unprecedented potential of control on the spin filtering effects, ranging up to making the h-BN metallic. During this thesis, we have been able to demonstrate that the integration of graphene and h-BN in MTJs through direct CVD growth is a promising process in order to fully exploit their properties. The results obtained of high magnetoresistance and spin filtering point to the high potential for MTJs of graphene and h-BN but also to all the new 2D materials to come. These studies pave the way for exploring a new path for MTJs : the 2D-MTJs.
108

Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems

Zhang, Panpan, Wang, Faxing, Yu, Minghao, Zhuang, Xiaodong, Feng, Xinliang 17 July 2019 (has links)
Nowadays, the increasing requirements of portable, implantable, and wearable electronics have greatly stimulated the development of miniaturized energy storage devices (MESDs). Electrochemically active materials and microfabrication techniques are two indispensable parts in MESDs. Particularly, the architecture design of microelectrode arrays is beneficial to the accessibility of two-dimensional (2D) active materials. Therefore, this study reviews the recent advancements in microbatteries and microsupercapacitors based on electrochemically active 2D materials. Emerging microfabrication strategies enable the precise control over the thickness, homogeneity, structure, and dimension in miniaturized devices, which offer tremendous opportunities for achieving both high energy and power densities. Furthermore, smart functions and integrated systems are discussed in detail in light of the emergence of intelligent and interactive modes. Finally, future developments, opportunities, and urgent challenges related to 2D materials, device fabrications, smart responsive designs, and microdevice integrations are provided.
109

SPINTRONIC DEVICES FROM CONVENTIONAL AND EMERGING 2D MATERIALS FOR PROBABILISTIC COMPUTING

Vaibhav R Ostwal (9751070) 14 December 2020 (has links)
<p>Novel computational paradigms based on non-von Neumann architectures are being extensively explored for modern data-intensive applications and big-data problems. One direction in this context is to harness the intrinsic physics of spintronics devices for the implementation of nanoscale and low-power building blocks of such emerging computational systems. For example, a Probabilistic Spin Logic (PSL) that consists of networks of p-bits has been proposed for neuromorphic computing, Bayesian networks, and for solving optimization problems. In my work, I will discuss two types of device-components required for PSL: (i) p-bits mimicking binary stochastic neurons (BSN) and (ii) compound synapses for implementing weighted interconnects between p-bits. Furthermore, I will also show how the integration of recently discovered van der Waals ferromagnets in spintronics devices can reduce the current densities required by orders of magnitude, paving the way for future low-power spintronics devices.</p> <p>First, a spin-device with input-output isolation and stable magnets capable of generating tunable random numbers, similar to a BSN, was demonstrated. In this device, spin-orbit torque pulses are used to initialize a nano-magnet with perpendicular magnetic anisotropy (PMA) along its hard axis. After removal of each pulse, the nano-magnet can relax back to either of its two stable states, generating a stream of binary random numbers. By applying a small Oersted field using the input terminal of the device, the probability of obtaining 0 or 1 in binary random numbers (P) can be tuned electrically. Furthermore, our work shows that in the case when two stochastic devices are connected in series, “P” of the second device is a function of “P” of the first p-bit and the weight of the interconnection between them. Such control over correlated probabilities of stochastic devices using interconnecting weights is the working principle of PSL.</p> <p>Next my work focused on compact and energy efficient implementations of p-bits and interconnecting weights using modified spin-devices. It was shown that unstable in-plane magnetic tunneling junctions (MTJs), i.e. MTJs with a low energy barrier, naturally fluctuate between two states (parallel and anti-parallel) without any external excitation, in this way generating binary random numbers. Furthermore, spin-orbit torque of tantalum is used to control the time spent by the in-plane MTJ in either of its two states i.e. “P” of the device. In this device, the READ and WRITE paths are separated since the MTJ state is read by passing a current through the MTJ (READ path) while “P” is controlled by passing a current through the tantalum bar (WRITE path). Hence, a BSN/p-bit is implemented without energy-consuming hard axis initialization of the magnet and Oersted fields. Next, probabilistic switching of stable magnets was utilized to implement a novel compound synapse, which can be used for weighted interconnects between p-bits. In this experiment, an ensemble of nano-magnets was subjected to spin-orbit torque pulses such that each nano-magnet has a finite probability of switching. Hence, when a series of pulses are applied, the total magnetization of the ensemble gradually increases with the number of pulses</p> <p>applied similar to the potentiation and depression curves of synapses. Furthermore, it was shown that a modified pulse scheme can improve the linearity of the synaptic behavior, which is desired for neuromorphic computing. By implementing both neuronal and synaptic devices using simple nano-magnets, we have shown that PSL can be realized using a modified Magnetic Random Access Memory (MRAM) technology. Note that MRAM technology exists in many current foundries.</p> <p>To further reduce the current densities required for spin-torque devices, we have fabricated heterostructures consisting of a 2-dimensional semiconducting ferromagnet (Cr<sub>2</sub>Ge<sub>2</sub>Te<sub>6</sub>) and a metal with spin-orbit coupling metal (tantalum). Because of properties such as clean interfaces, perfect crystalline nanomagnet structure and sustained magnetic moments down to the mono-layer limit and low current shunting, 2D ferromagnets require orders of magnitude lower current densities for spin-orbit torque switching than conventional metallic ferromagnets such as CoFeB.</p>
110

Magnetic Properties of Two-Dimensional Honeycomb-Lattice Materials

Utermohlen, Franz Gunther January 2021 (has links)
No description available.

Page generated in 0.1552 seconds