Spelling suggestions: "subject:"3D canner"" "subject:"3D 3dscanner""
1 |
Real-time 3D scanningWeise, Thibaut January 2009 (has links)
Zugl.: Zürich, Techn. Hochsch., Diss., 2009
|
2 |
Bestimmung der Dichte des Bodens: Einsatz optischer 3D-Messverfahren zur Volumenbestimmung unregelmäßiger Geometrien im ErdbauWendt, Enrico 19 October 2021 (has links)
Zumeist sind Gründungen horizontal eben hergestellte Flächen, dessen Nachweis über die direkte Ermittlung der Dichte im Feld durch verschiedene Verfahren, wie z.B. Flüssigkeitsersatz-Verfahren, sichergestellt ist. Jedoch gibt es auch komplexe Körper im Erdbau, wie z.B. bei der Herstellung eines Rohrzwickelbereichs bei wassergeführten Leitungen, welche bisher nur mit indirekten Aufschlussverfahren nachgewiesen werden konnten. Aufgrund von Entwicklungen neuer Technologien zum Einbau von Rohrleitungen, könnte die Bettung zukünftig direkt in einer formgebenden Verdichtung stattfinden. Die Wirkung einer solchen Herstellung wird in ersten Zügen in dieser Arbeit untersucht. Dafür wird die Wirksamkeit eines Vibrationsverdichters zur formgebenden Verdichtung überprüft. Da es sich hierbei um die ersten Versuche mit dem Prototypen auf freier Arbeitsfläche handelt, müssen noch weitere Versuche mit Verbesserungen des Geräts vorgenommen werden.
Um die Verdichtungswirkung des Vibrationsverdichters überprüfen zu können, wurde in dieser Arbeit ein optisches Messverfahren zur direkten Dichtebestimmung entwickelt, da dies über herkömmliche Methoden bei unregelmäßigen Körpern im Erdbau nicht möglich ist. Dafür wird eine gesicherte Arbeitsumgebung hergestellt und die Dichte mit einem handgeführten 3D-Scanner nachgewiesen.
Die Versuche mit dem optischen Messverfahren haben im Vergleich zu den herkömmlichen Dichtebestimmungs-Methoden eine sehr hohe Genauigkeit aufgewiesen. Außerdem konnte der 3D-Scanner bei der Analyse von unregelmäßigen Erdkörpern überzeugen, weshalb es das Potential hat, eine reelle Ergänzung der Verfahren zur In-situ Dichtebestimmung zu werden, um die bestehende geotechnische Lücke zu schließen. Weiterführende Forschungen könnten sich mit einer verbesserten formgebenden Verdichtung und dessen Auswertung über das optische Messverfahren beschäftigen.:1 Überblick und Ziele
2 Ausgangslage
3 Stand der Technik
4 Auswahl und Umgang mit dem Probeboden
4.1 Klassifizierung
4.2 Möglichkeiten zum reproduzierbaren lockeren Einbau feuchter Bodenproben
4.3 Homogenitätsprüfung
4.4 Zusammenfassung der Materialkennwerte
5 Herkömmliche Verfahren zur Dichtebestimmung
5.1 Vergleich am Proctortopf
5.2 Probeneinbau
5.3 Dichte mit Setzungsmessung
5.4 Dichte bei definiertem Volumen
5.5 Wasserersatz-Verfahren
5.6 Gipsersatz-Verfahren
5.7 Zusammenfassung und Fazit
6 Dichtebestimmung mittels 3D-Scanner
6.1 3D-Scanner „Artec Leo“
6.1.1 Funktionsweise und Genauigkeiten
6.2 Neue Möglichkeit zur Volumenbestimmung
7 Versuchsstand
7.1 Entwickelte Gegenstände zur Versuchsdurchführung
7.2 Probeneinbau
7.3 Verdichtung mittels Vibrationsverdichter
7.4 Zusammenfassung und Fazit
8 Auswertung
8.1 Vergleich der herkömmlichen Dichtebestimmungsverfahren
8.2 Vergleich des Dichtebestimmungsverfahrens mittels 3D-Scanner
8.3 Ergebnisse aus den Versuchen am Versuchsstand
8.4 Zusammenfassung und Fazit
9 Ergebnisbeurteilung und Ausblick
|
3 |
Datenqualität in Rapid Prototyping ProzessenHaugwitz, Carsten 10 December 2016 (has links) (PDF)
Inhalt
Die Technologien des Rapid Prototypings erreichen eine immer größer werdende Marktdurchdringung und erweitern die Möglichkeiten von Ingenieuren und Spezialisten angrenzender Fachbereiche. Je nach Datenursprung werden Schnittstellen wie Step oder STL genutzt oder es sind Zwischenschritte erforderlich, um die Daten aus 3D Scannern oder bildgebenden Quellen (CT; MRT) weiter zu verarbeiten. Dabei gibt es Fehler und Ungenauigkeiten in der Datenkette, die analysiert hier werden sollen. Aus den Kenntnissen über die Fehler sollen Methoden aufgezeigt werden, um die Datenqualität zu erhöhen, die Datenmengen zu verringern und die Prozesse zu stabilisieren. / Data quality rapid prototyping processes
The rapid prototyping technologies achieve a bigger market penetration and expand the capabilities of engineers and specialists fields. Depending on the data source interfaces such as Step or STL are used or there are intermediate steps required to process the data from 3D scanners or imaging sources such as CT, MRI or X-ray on. There are errors and inaccuracies in the data flow, which have to be analyzed. Methods are from the knowledge of the errors are pointed out, which will enable to increase the data quality and to make the process more stable.
|
4 |
3D Scanner : Scanning small objects and recreating them visually as a mesh in a computer / 3D-ScannerEgenäs, Carl, Sacilotto, Axel January 2021 (has links)
The purpose of this project was to construct a 3D scanner capable of scanning smaller objects and visualize them in a computer with satisfying accuracy. The goal was then to generate an STL file able to be 3D printed in an attempt at reverse engineering. Components, materials and tools were provided by KTH to the best of their ability and abudget of 1000 SEK was given to purchase components not available at KTH. The scanner was designed using Solid Edge and utilizes two stepper motors to scan objects. One motor is used to rotate a platform that the object is placed upon and the second stepper motor is used to move an elevator on which a distance sensor is mounted. By keeping track of the elevator’s height in conjunction with the rotation of the object, the distance measured by the sensor can be converted into a point in a Cartesian coordinate system. Several different methods were tested in order to see how results varied. Firstly, the density of scanned points was increased, meaning that the sensor returned values more often as the stepper motor was rotating. Secondly, multiple measurements were made for a single point to determine an average distance and in that way reduce noise and uncertainty. Placing a single laser sensor perpendicular to the object rotating plate proved to be the optimal arrangement in terms of accuracy with the limited budget provided for this project. The scans are very time consuming which makes it important to decide whether to prioritize speed or accuracy. / Syftet med detta projekt var att konstruera en 3D-scanner kapabel att scanna mindre objekt och visualisera dem i en dator med tillfredsställande resultat. Målet var sedan att generera en STL-fil som går att skriva ut i 3D-skrivare för att försöka använda sig av reverse engineering. Komponenter, material och verktyg försågs av KTH så gott det gick och en budget på 1000 kr var tillgänglig för att inhandla komponenter som inte fanns på KTH. Skannern designades med hjälp av Solid Edge och använder sig av två stegmotorer för att skanna object. En motor användes för att rotera den plattform som objektet placerades på och den andra stegmotorn användes för att flytta en hiss varpå en avståndssensor monterades. Genom att hålla koll på hissens höjd i kombination med rotationen av objektet kan avståndet som sensorn uppmäter konvertera still en punkt i det kartesiska koordinatsystemet. Ett flertal metoder testades för att undersöka hur resultaten varierade. För det första ökades densiteten av skannade punkter, det vill säga sensorn returnerade värden oftare än stegmotorn roterade. För det andra genomfördes ett flertal mätningar för varje enskild punkt för att bestämma ett medelavstånd och på så sätt minimera brus och osäkerhet. Att placera en enstaka lasersensor vinkelrätt mot objektroterande plattan visade sig vara det optimala arrangemanget för noggrannhet med den begränsade budgeten för det här projektet. Inskanningarna är väldigt tidskrävande vilket gör det viktigt att bestämma sig för att prioritera snabbhet eller noggrannhet.
|
5 |
Datenqualität in Rapid Prototyping ProzessenHaugwitz, Carsten January 2016 (has links)
Inhalt
Die Technologien des Rapid Prototypings erreichen eine immer größer werdende Marktdurchdringung und erweitern die Möglichkeiten von Ingenieuren und Spezialisten angrenzender Fachbereiche. Je nach Datenursprung werden Schnittstellen wie Step oder STL genutzt oder es sind Zwischenschritte erforderlich, um die Daten aus 3D Scannern oder bildgebenden Quellen (CT; MRT) weiter zu verarbeiten. Dabei gibt es Fehler und Ungenauigkeiten in der Datenkette, die analysiert hier werden sollen. Aus den Kenntnissen über die Fehler sollen Methoden aufgezeigt werden, um die Datenqualität zu erhöhen, die Datenmengen zu verringern und die Prozesse zu stabilisieren. / Data quality rapid prototyping processes
The rapid prototyping technologies achieve a bigger market penetration and expand the capabilities of engineers and specialists fields. Depending on the data source interfaces such as Step or STL are used or there are intermediate steps required to process the data from 3D scanners or imaging sources such as CT, MRI or X-ray on. There are errors and inaccuracies in the data flow, which have to be analyzed. Methods are from the knowledge of the errors are pointed out, which will enable to increase the data quality and to make the process more stable.
|
6 |
Avaliação Comparativa dos Scanners 3D Artec MHT e Cyberware WBX para aplicações em Antropometria e Ergonomia / Comparative assessment of Artec MHT and Cyberware WBX 3D Scanners for applications in Anthropometry and Ergonomic StudiesDenise Silva Batista 29 January 2014 (has links)
A partir das dimensões dos indivíduos pode-se definir dimensionamentos adequados para os produtos e postos de trabalho, proporcionando segurança e conforto aos usuários. Com o avanço da tecnologia de digitalização de imagens (escaneamento) 3D, é possível tirar algumas medidas de maneira mais rápida e com a redução da presença do entrevistado durante o processo. No entanto, faltam estudos que avaliem estas tecnologias no Brasil, sendo necessária a realização de uma comparação das tecnologias e das respectivas precisões para que seu uso em pesquisas. Com o objetivo de oferecer métodos comparativos para escolha dos marcadores e equipamentos a serem utilizados em uma pesquisa antropométrica tridimensional da população brasileira, no presente estudo estão comparadas duas tecnologias de escaneamento: o sistema a laser WBX da empresa norte americana Cyberware e o sistema MHT da empresa russa Artec Group. O método para avaliação da precisão dimensional dos dados advindos desses equipamentos de digitalização de imagens 3D teve cinco etapas: Estudo dos processos de escaneamento; Escaneamento dos marcadores de pontos anatômicos; Escaneamento utilizando um corpo de prova cilíndrico; Escaneamento de um manequim; Escaneamento de um voluntário que teve seus pontos anatômicos marcados para a retirada de medidas. Foi feita uma comparação entre as medidas retiradas manualmente, por meio de antropômetro e virtualmente, com o auxílio do software de modelagem tridimensional Rhinoceros. Em relação aos resultados obtidos na avaliação do manequim e do voluntário, concluiu-se que a magnitude do erro absoluto é semelhante para ambos os scanners, e permanece constante independentemente das dimensões sob análise. As principais diferenças são em relação às funcionalidades dos equipamentos. / Only from the dimensions of individuals it is possible to define appropriate sizing for products and workplaces, providing security and comfort to users. With the evolution of 3D digital imaging technology (3D scanning), it is possible to take some measurements faster and reduce the need of the interviewee during the process. However, there are few studies that evaluate these technologies in Brazil. It is necessary to compare these equipments in order to know their precision so they can be used in researches. In order to choose anatomical markers and equipments, this study compares two different equipments: Cyberware WBX laser scanner and Artec Group MHT white light scanner. The method for assessing the dimensional accuracy of the data obtained from those scanning 3D imaging equipment had five steps: Study of the scanning processes; Scanning using a cylindrical object; Scanning a mannequin; Scanning a volunteer who had his anatomical points marked for taking measurements. The comparison was made between the measurements taken manually with an anthropometer and virtually using the 3D modeling software Rhinoceros. Based on results obtained in the evaluation of the mannequin and volunteer, it was concluded that the absolute error is similar for both scanners and remains constant regardless of the size under consideration. The main differences are the features of each equipment.
|
7 |
Avaliação Comparativa dos Scanners 3D Artec MHT e Cyberware WBX para aplicações em Antropometria e Ergonomia / Comparative assessment of Artec MHT and Cyberware WBX 3D Scanners for applications in Anthropometry and Ergonomic StudiesDenise Silva Batista 29 January 2014 (has links)
A partir das dimensões dos indivíduos pode-se definir dimensionamentos adequados para os produtos e postos de trabalho, proporcionando segurança e conforto aos usuários. Com o avanço da tecnologia de digitalização de imagens (escaneamento) 3D, é possível tirar algumas medidas de maneira mais rápida e com a redução da presença do entrevistado durante o processo. No entanto, faltam estudos que avaliem estas tecnologias no Brasil, sendo necessária a realização de uma comparação das tecnologias e das respectivas precisões para que seu uso em pesquisas. Com o objetivo de oferecer métodos comparativos para escolha dos marcadores e equipamentos a serem utilizados em uma pesquisa antropométrica tridimensional da população brasileira, no presente estudo estão comparadas duas tecnologias de escaneamento: o sistema a laser WBX da empresa norte americana Cyberware e o sistema MHT da empresa russa Artec Group. O método para avaliação da precisão dimensional dos dados advindos desses equipamentos de digitalização de imagens 3D teve cinco etapas: Estudo dos processos de escaneamento; Escaneamento dos marcadores de pontos anatômicos; Escaneamento utilizando um corpo de prova cilíndrico; Escaneamento de um manequim; Escaneamento de um voluntário que teve seus pontos anatômicos marcados para a retirada de medidas. Foi feita uma comparação entre as medidas retiradas manualmente, por meio de antropômetro e virtualmente, com o auxílio do software de modelagem tridimensional Rhinoceros. Em relação aos resultados obtidos na avaliação do manequim e do voluntário, concluiu-se que a magnitude do erro absoluto é semelhante para ambos os scanners, e permanece constante independentemente das dimensões sob análise. As principais diferenças são em relação às funcionalidades dos equipamentos. / Only from the dimensions of individuals it is possible to define appropriate sizing for products and workplaces, providing security and comfort to users. With the evolution of 3D digital imaging technology (3D scanning), it is possible to take some measurements faster and reduce the need of the interviewee during the process. However, there are few studies that evaluate these technologies in Brazil. It is necessary to compare these equipments in order to know their precision so they can be used in researches. In order to choose anatomical markers and equipments, this study compares two different equipments: Cyberware WBX laser scanner and Artec Group MHT white light scanner. The method for assessing the dimensional accuracy of the data obtained from those scanning 3D imaging equipment had five steps: Study of the scanning processes; Scanning using a cylindrical object; Scanning a mannequin; Scanning a volunteer who had his anatomical points marked for taking measurements. The comparison was made between the measurements taken manually with an anthropometer and virtually using the 3D modeling software Rhinoceros. Based on results obtained in the evaluation of the mannequin and volunteer, it was concluded that the absolute error is similar for both scanners and remains constant regardless of the size under consideration. The main differences are the features of each equipment.
|
8 |
Konstrukce 3D skeneru pro výukové účely / Design of a 3D scanner for educational purposesPaprsek, Adam January 2018 (has links)
The aim of the submitted semestral project is research of 3D scanning object methods. The 3D scans utilization and types of these scans have been mentioned in the first chapter. The scanners are grouped into two basic methods – contact and contactless. The second chapter is dedicated to 3D model measurement principles, which are described in detail in four sub-chapters. In the following chapter is described design with complete realization 3D scanner with the implementation of the application for its controlling. Last part of the thesis concerns the 3D model editing and method evaluating.
|
9 |
Návrh replikované výroby zvolené součásti za využití technologie Reverse engineering a Rapid prototyping / Design of replicated production of the selected part using the technology Reverse Engineering and Rapid prototypingKolář, Jakub January 2019 (has links)
This study has been as a diploma project at BUT. Theoretical part describes the most used methods in Reverse engineering and Rapid Prototyping. Each method describes its characteristics, usability and pros and cons in general. Practical part of this study deals with application of these methods. Goal of this work has been to obtain a digital model of a winker from Škoda 1000 car using optical scanner ATOS, making a new master model in CATIA software, analyzing its dimensions compared to the scanned model and choosing a suitable manufacturing technology with emphasis on functional properties of this component.
|
10 |
Výzkumný 3D skener pro účely skenování problematických povrchů / Research 3D scanner for scanning of problematic surfacesBátrla, Martin January 2019 (has links)
This diploma thesis deals with design of 3D scanner for scanning problematic surfaces. The research part introduces the problem of 3D scanning and describes causes of random errors. Further, it contains a description and division of methods that leads to their elimination. The practical part of the thesis deals with design and description of hardware and software parts of the 3D scanner. The output of this work is device that is able to implement and compare quality of codification methods mainly for scanning of problematic surfaces. The functionality of equipment was verified by experimental measurement.
|
Page generated in 0.0286 seconds