• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Landschaftsvisualisierung mit Java 3D

Barbisch, Martin. January 2002 (has links)
Stuttgart, Univ., Studienarb., 2002.
2

Das Relief der Urschweiz von Franz Ludwig Pfyffer (1716-1802) : 3D-Rekonstruktion, Analyse und Interpretation /

Niederöst, Jana January 2005 (has links)
Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 16077, 2005.
3

Aufbau virtueller Versuchsanlagen und deren Nutzung in Lehrveranstaltungen zur Automatisierungstechnik

Othman, Moaid, Stöcker, Christian 27 January 2022 (has links)
In der Ingenieursausbildung ist die Arbeit an Anlagen und Maschinen ein wesentlicher Baustein, um die Anwendbarkeit, Möglichkeiten und Grenzen der in der Theorie vermittelten Methoden an praktischen Problemstellungen zu erproben und einschätzen zu lernen. Zu diesem Zweck werden an vielen Hochschulen und Universitäten unterschiedliche Versuchsanlagen eingesetzt. Die Errichtung und der Betrieb solcher Anlagen erfordern jedoch Platz und sind typischerweise mit hohem Einsatz personeller und finanzieller Ressourcen verbunden. Dieser Beitrag betrachtet den Einsatz virtueller Versuchsanlagen als eine mögliche Ergänzung der bestehenden Laborinfrastruktur. Virtuelle Anlage sind solche, die nicht physisch existieren, sondern deren dynamisches Verhalten simuliert und in einer 3D-Visualisierungen auf einem Monitor oder in einer VR-Brille dargestellt werden kann. Virtuelle Anlagen haben gegenüber realen Versuchsanlagen viele Vorteile in Bezug auf die Dauer und Kosten für deren Realisierung, sowie deren Erweiterung und Anpassung an neue Lehrinhalte und die Skalierung und Vervielfältigung für den Einsatz in Praktika. Auf der anderen Seite müssen Laboringenieure für die Entwicklung, Pflege und Instandhaltung virtueller Anlagen über andere Kompetenzen (insb. im Bereich der IT und Programmierung) verfügen, als bei realen Anlagen. Zudem wird für den Betrieb solcher Anlagen zusätzliche Soft- und Hardware benötigt. Am Beispiel eines virtuellen Aufzugs beschreibt dieser Beitrag im Einzelnen diese Vor- und Nachteile und gibt Hinweise für den Einsatz einer virtuellen Anlage in Praktika und Übungen.
4

SUFUvet - Förderung von Soft skills durch projektbasiertes Lernen

Raida, Antonia Christine, Münster, Sander, Lücker, Ernst, Maurer, Patric 09 June 2017 (has links)
Im Projekt SUFUvet haben Studierende der Veterinärmedizin und der Medieninformatik zur Förderung der Soft Skills gemeinsam einen 3D-visualisierten E-Learning-Kurs erstellt. Durch intensiven interdisziplinären Austausch konnten fachlich-inhaltliche Schwierigkeiten überwunden und ein Endprodukt kreiert werden, welches durch einen Fachbereich alleine nicht realisierbar gewesen wäre. Die Strukturierung der Kooperation durch Scrum wurde dabei durch die Studierenden positiv bewertet.
5

Fernerkundung und GIS zur Erfassung, Modellierung und Visualisierung orientalischer Stadtstrukturen : das Beispiel Sanaa (Jemen) / Acquisition, modelling and visualisation of oriental city structures with remote sensing and GIS : the case of Sanaa (Yemen)

Jamil, Abdlhamed January 2010 (has links)
Gegenstand dieser Arbeit ist die Konzeption, Entwicklung und exemplarische Implementierung eines generischen Verfahrens zur Erfassung, Verarbeitung, Auswertung und kartographischen Visualisierung urbaner Strukturen im altweltlichen Trockengürtel mittels hochauflösender operationeller Fernerkundungsdaten. Das Verfahren wird am Beispiel der jemenitischen Hauptstadt Sanaa einer Vertreterin des Typus der Orientalischen Stadt angewandt und evaluiert. Das zu entwickelnde Verfahren soll auf Standardverfahren und Systemen der raumbezogenen Informationsverarbeitung basieren und in seinen wesentlichen Prozessschritten automatisiert werden können. Daten von hochauflösenden operationellen Fernerkundungssystemen (wie z.B. QuickBird, Ikonos u. a.) erlauben die Erkennung und Kartierung urbaner Objekte, wie Gebäude, Straßen und sogar Autos. Die mit ihnen erstellten Karten und den daraus gewonnenen Informationen können zur Erfassung von Urbanisierungsprozessen (Stadt- und Bevölkerungswachstum) herangezogen werden. Sie werden auch zur Generierung von 3D-Stadtmodellen genutzt. Diese dienen z.B. der Visualisierung für touristische Anwendungen, für die Stadtplanung, für Lärmanalysen oder für die Standortplanung von Mobilfunkantennen. Bei dem in dieser Arbeit erzeugten 3D-Visualisierung wurden jedoch keine Gebäudedetails erfasst. Entscheidend war vielmehr die Wiedergabe der Siedlungsstruktur, die im Vorhandensein und in der Anordnung der Gebäude liegt. In dieser Arbeit wurden Daten des Satellitensensors Quickbird von 2005 verwendet. Sie zeigen einen Ausschnitt der Stadt Sanaa in Jemen. Die Fernerkundungsdaten wurden durch andere Daten, u.a. auch Geländedaten, ergänzt und verifiziert. Das ausgearbeitete Verfahren besteht aus der Klassifikation der Satellitenbild-aufnahme, die u.a. pixelbezogen und für jede Klasse einzeln (pixelbezogene Klassifikation auf Klassenebene) durchgeführt wurde. Zusätzlich fand eine visuelle Interpretation der Satellitenbildaufnahme statt, bei der einzelne Flächen und die Straßen digitalisiert und die Objekte mit Symbolen gekennzeichnet wurden. Die aus beiden Verfahren erstellten Stadtkarten wurden zu einer fusioniert. Durch die Kombination der Ergebnisse werden die Vorteile beider Karten in einer vereint und ihre jeweiligen Schwächen beseitigt bzw. minimiert. Die digitale Erfassung der Konturlinien auf der Orthophotomap von Sanaa erlaubte die Erstellung eines Digitalen Geländemodells, das der dreidimensionalen Darstellung des Altstadtbereichs von Sanaa diente. Die 3D-Visualisierung wurde sowohl von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene als auch von der digitalen Erfassung der Objekte erstellt. Die Ergebnisse beider Visualisierungen wurden im Anschluss in einer Stadtkarte vereint. Bei allen Klassifikationsverfahren wurden die asphaltierten Straßen, die Vegetation und einzeln stehende Gebäude sehr gut erfasst. Die Klassifikation der Altstadt gestaltete sich aufgrund der dort für die Klassifikation herrschenden ungünstigen Bedingungen am problematischsten. Die insgesamt besten Ergebnisse mit den höchsten Genauigkeitswerten wurden bei der pixelbezogenen Klassifikation auf Klassenebene erzielt. Dadurch, dass jede Klasse einzeln klassifiziert wurde, konnte die zu einer Klasse gehörende Fläche besser erfasst und nachbearbeitet werden. Die Datenmenge wurde reduziert, die Bearbeitungszeit somit kürzer und die Speicherkapazität geringer. Die Auswertung bzw. visuelle Validierung der pixel-bezogenen Klassifikationsergebnisse auf Klassenebene mit dem Originalsatelliten-bild gestaltete sich einfacher und erfolgte genauer als bei den anderen durch-geführten Klassifikationsverfahren. Außerdem war es durch die alleinige Erfassung der Klasse Gebäude möglich, eine 3D-Visualisierung zu erzeugen. Bei einem Vergleich der erstellten Stadtkarten ergibt sich, dass die durch die visuelle Interpretation erstellte Karte mehr Informationen enthält. Die von den pixelbezogenen Klassifikationsergebnissen auf Klassenebene erstellte Karte ist aber weniger arbeits- und zeitaufwendig zu erzeugen. Zudem arbeitet sie die Struktur einer orientalischen Stadt mit den wesentlichen Merkmalen besser heraus. Durch die auf Basis der 2D-Stadtkarten erstellte 3D-Visualisierung wird ein anderer räumlicher Eindruck vermittelt und bestimmte Elemente einer orientalischen Stadt deutlich gemacht. Dazu zählen die sich in der Altstadt befindenden Sackgassen und die ehemalige Stadtmauer. Auch die für Sanaa typischen Hochhäuser werden in der 3D-Visualisierung erkannt. Insgesamt wurde in der Arbeit ein generisches Verfahren entwickelt, dass mit geringen Modifikationen auch auf andere städtische Räume des Typus orientalische Stadt angewendet werden kann. / This study aims at the development and implementation of a generic procedure for the acquisition, processing, analysis and cartographic visualisation of urban space in arid zone cities based on operational remote sensing imagery. As a proof of concept the Yemeni capital Sanaa has been selected as a use case. The workflow developed is based on standard procedures and systems of spatial information processing and allows for subsequent automation oft its essential processes. Today, high-resolution remote sensing data from operational satellite systems (such as QuickBird, Ikonos etc) facilitate the recognition and mapping of urban objects such as buildings, streets and even cars which, in the past could only be acquired by non-operational aerial photography. The satellite imagery can be used to generate maps and even 3D-representation of the urban space. Both maps and 3D-visualisations can be used for up-to-date land use mapping, zoning and urban planning purposes etc. The 3D-visualisation provides a deeper understanding of urban structures by integrating building height into the analysis. For this study remote sensing data of the Quickbird satellite data of 2005 were used. They show a section of the city of Sanaa in Yemen. The remote sensing data were supplemented and verified by other data, including terrain data. The image data are then subjected to thorough digital image. This procedure consists of a pixel-oriented classification of the satellite image acquisition at class level. In addition, a visual interpretation of the satellite image has been undertaken to identify and label individual objects (areas, surfaces, streets) etc. which were subsequently digitised. The town maps created in both procedures were merged to one. Through this combination of the results, the advantages of both maps are brought together and their respective weaknesses are eliminated or minimized. The digital collection of the contour lines on the orthophoto map of Sanaa allowed for the creation of a digital terrain model, which was used for the three-dimensional representation of Sanaa's historic district. The 3D-visualisation was created from the classification results as well as from the digital collection of the objects and the results of both visualisations were combined in a city map. In all classification procedures, paved roads, vegetation and single buildings were detected very well. The best overall results with the highest accuracy values achieved in the pixel-oriented classification at class level. Because each class has been classified separately, size belonging to that class can be better understood and optimised. The amount of data could be reduced, thus requiring less memory and resulting in a shorter processing time. The evaluation and validation of the pixel-oriented visual classification results at class level with the original satellite imagery was designed more simply and more accurately than other classification methods implemented. It was also possible by the separate recording of the class building to create a 3D-visualisation. A comparison of the maps created found that the map created from visual interpretation contains more information. The map based on pixel-oriented classification results at class level proved to be less labor- and time-consuming, and the structure of an oriental city with the main features will be worked out better. The 2D-maps and the 3D-visualisation provide a different spatial impression, and certain elements of an oriental city clearly detectable. These include the characteristic dead ends in the old town and the former city wall. The typical high-rise houses of Sanaa are detected in the 3D-visualisation. This work developed a generic procedure to detect, analyse and visualise urban structures in arid zone environments. The city of Sanaa served as a proof of concept. The results show that the workflow developed is instrumental in detecting typical structures of oriental cities. The results achieved in the case study Sanaa prove that the process can be adapted to the investigation of other arid zone cities in the Middle East with minor modifications.
6

Prozesssprachenbasiertes System zur Ansteuerung digitaler Menschmodelle als Teilkomponente einer Software zur Planung und Visualisierung menschlicher Arbeit in der Digitalen Fabrik / Process language based system for controlling digital human models as a software component for planning and visualization of human activities in the Digital Factory

Bauer, Sebastian 08 March 2016 (has links) (PDF)
Die Werkzeuge und Methoden der Digitalen Fabrik sind bereits seit vielen Jahren in den einzelnen Phasen des Produktentstehungsprozess im Einsatz. Sie werden dabei u.a. auch zur Planung und Gestaltung menschlicher Arbeit eingesetzt. Mit Hilfe digitaler Menschmodelle können Aspekte des Arbeitsablaufs, der Zeitwirtschaft und der Arbeitsplatzgestaltung bereits frühzeitig untersucht und verbessert werden. Die Entwicklung effizienter Simulationssysteme steht auf diesem Gebiet jedoch insbesondere im Vergleich mit anderen Bereichen, wie beispielsweise der Robotersimulation, noch am Anfang. Die vorliegende Arbeit beschäftigt sich zunächst mit der Analyse bereits existierender Menschmodell-Simulationssysteme. Aus den identifizierten Schwachstellen dieser Systeme und weiteren durch Experteninterviews sowie Literaturrecherche gewonnenen Erkenntnissen wird eine Anforderungsliste erstellt, die als Grundlage für die Konzeption und Umsetzung eines innovativen Ansatzes zur Ansteuerung und Bewegungsgenerierung für digitale Menschmodelle dient. Diese neuartige Methodik wird schließlich in ein Simulations-Softwaresystem implementiert und anschließend im Praxis-Einsatz evaluiert. Es konnte gezeigt werden, dass das neue System die Mängel der vorhandenen Systeme behebt und somit als Werkzeug zur effizienten Planung, Gestaltung und Bewertung menschlicher Arbeit geeignet ist. / For many years the tools and methods of the Digital Factory are used in various stages of the product development process. They are also used for the planning and design of human work, which is typically done using a digital human model. Aspects of the workflow, time management and workplace design can be investigated and improved upon in the early stages of the product development process using digital human models. But in this field the development of efficient simulation systems is not matured enough compared to other fields for e.g. robot simulation. This paper starts with an analysis of existing simulation systems for digital human models. Afterwards a requirements list is created from the identified weaknesses of these systems, knowledge gained through expert interviews and literature reviews. These requirements serve as the base for the design and implementation of an innovative approach for motion generation and control of digital human models. This new methodology is then implemented as a simulation software system and evaluated in practical applications. The developed system fixed the shortcomings of existing systems and thus it is a suitable tool for efficient planning, design and evaluation of human labor.
7

Prozesssprachenbasiertes System zur Ansteuerung digitaler Menschmodelle als Teilkomponente einer Software zur Planung und Visualisierung menschlicher Arbeit in der Digitalen Fabrik

Bauer, Sebastian 08 March 2016 (has links)
Die Werkzeuge und Methoden der Digitalen Fabrik sind bereits seit vielen Jahren in den einzelnen Phasen des Produktentstehungsprozess im Einsatz. Sie werden dabei u.a. auch zur Planung und Gestaltung menschlicher Arbeit eingesetzt. Mit Hilfe digitaler Menschmodelle können Aspekte des Arbeitsablaufs, der Zeitwirtschaft und der Arbeitsplatzgestaltung bereits frühzeitig untersucht und verbessert werden. Die Entwicklung effizienter Simulationssysteme steht auf diesem Gebiet jedoch insbesondere im Vergleich mit anderen Bereichen, wie beispielsweise der Robotersimulation, noch am Anfang. Die vorliegende Arbeit beschäftigt sich zunächst mit der Analyse bereits existierender Menschmodell-Simulationssysteme. Aus den identifizierten Schwachstellen dieser Systeme und weiteren durch Experteninterviews sowie Literaturrecherche gewonnenen Erkenntnissen wird eine Anforderungsliste erstellt, die als Grundlage für die Konzeption und Umsetzung eines innovativen Ansatzes zur Ansteuerung und Bewegungsgenerierung für digitale Menschmodelle dient. Diese neuartige Methodik wird schließlich in ein Simulations-Softwaresystem implementiert und anschließend im Praxis-Einsatz evaluiert. Es konnte gezeigt werden, dass das neue System die Mängel der vorhandenen Systeme behebt und somit als Werkzeug zur effizienten Planung, Gestaltung und Bewertung menschlicher Arbeit geeignet ist. / For many years the tools and methods of the Digital Factory are used in various stages of the product development process. They are also used for the planning and design of human work, which is typically done using a digital human model. Aspects of the workflow, time management and workplace design can be investigated and improved upon in the early stages of the product development process using digital human models. But in this field the development of efficient simulation systems is not matured enough compared to other fields for e.g. robot simulation. This paper starts with an analysis of existing simulation systems for digital human models. Afterwards a requirements list is created from the identified weaknesses of these systems, knowledge gained through expert interviews and literature reviews. These requirements serve as the base for the design and implementation of an innovative approach for motion generation and control of digital human models. This new methodology is then implemented as a simulation software system and evaluated in practical applications. The developed system fixed the shortcomings of existing systems and thus it is a suitable tool for efficient planning, design and evaluation of human labor.
8

Entwicklung und Evaluation des „Laminitis Tools“ als Modul für das 3D Anatomieprogramm „Equine Hoof Explorer“ (Effigos AG)

Paul, Nancy 16 November 2023 (has links)
Einleitung Der Einsatz und die Beliebtheit von 3D-Visualisierungen im Fachgebiet der Anatomie und Veterinäranatomie sind in den vergangenen Jahren stetig gewachsen. Vor allem vor den Hintergrund einer potentiell besseren und leichteren Wissensrezeption von räumlichen Informationen durch den Einsatz von 3D- im Vergleich zu 2D-Modellen wurden diverse Studien zum Lernerfolg mit diesen Medien durchgeführt. Ziele der Untersuchung Ziel dieser Arbeit war es, ein Lehr- und Lernprogramm, das „Laminitis Tool“ als Modul des „Equine Hoof Explorers“ in Kooperation mit der Effigos AG zu entwickeln und nachfolgend zu evaluieren. Das Programm soll die morphologischen Veränderungen (mikroskopisch und makroskopisch) während der einzelnen Hufrehephasen ausgehend von den physiologisch anatomischen Gegebenheiten durch 3D-Visualisierungen sowie eine modular aufbereitete Zusammenfassung der Forschungsergebnisse zur Hufrehe in Textform präsentieren. Die Hypothese des Lernvorteils durch das 3D-Programm im Vergleich zu illustrierten Texten wurde überprüft. Material und Methoden 3D-Visualisierungen und Texte für das „Laminitis Tool“ wurden auf Basis von Literaturquellen erstellt, die einen Rückschluss auf den klinischen Grad der Hufrehe und das verwendete Versuchsmodell bzw. die Ätiopathologie erlaubten. Die Evaluation des „Laminitis Tools“ wurde in zwei Durchläufen (Crossover-Design) durchgeführt. Dazu wurden 87 Studierende des 2. Fachsemesters (2. FS) und 26 Studierenden des 4. Fachsemesters (4. FS) den Gruppen A und B zugeteilt. Jede Gruppe enthielt in etwa gleichgroße Anteile aus jedem Fachsemester. Alle Teilnehmer:innen mussten vorab eine subjektive Einschätzung zu ihren Vorkenntnissen zur Hufrehe geben. Retrospektiv wurden anhand dieser Angabe sowie der angegebenen Fachsemester die Wissensgruppen „mit Vorkenntnissen“ (mVK) und „ohne Vorkenntnisse“ (oVK) sowie 2. FS und 4. FS gebildet. Im Durchgang 1 (DG 1) arbeitete Gruppe A mit dem Text und Gruppe B mit dem Tool. Dies wechselte im Durchgang 2 (DG 2). Vor Beginn des Tests erhielt die jeweilige Toolgruppe eine kurze Einführung in die Bedienung des Tools. Nach Arbeit mit dem entsprechenden Medium wurde ein Single-Choice-Test durchgeführt. Ergebnisse Das „Laminitis Tool“ ist eine 3D-Visualisierungssoftware, die ein animiertes 3D-Modell des Hufes von außen (Modell „Klinik“) und innen (Modell „Huf“) sowie des Hufbeinträgers (Modell „Histologie“) vor und während einer Hufreheerkrankung zeigt. Alle Modelle werden durch einen modularisierten Text begleitet. Ein Video zeigt die Veränderungen an der dermo-epidermalen Grenze des Hufbeinträgers. In Gruppe A gaben 56,4 % und in Gruppe B 48,3 % der Teilnehmenden an, Vorkenntnisse zur Hufrehe zu haben. Im DG 1 ist die Anzahl der Fragen, die von Gruppe A signifikant besser beantwortet wurden als von Gruppe B, mit drei von zehn Fragen größer als in DG 2, wo es nur eine von zehn Fragen war. Betrachtet man die Gesamtheit der Fragen konnte Gruppe A im DG 1 ein signifikant besseres Ergebnis (p = 0,0286) erzielen als Gruppe B, wohingegen im DG 2 kein signifikanter Unterschied (p = 0,2071) zwischen den Gruppen bestand. Teilnehmer:innen der Gruppe A aus dem 2. FS und aus der Wissensgruppe oVK konnten ihre Gesamtleistung von DG 1 zu DG 2 steigern. Teilnehmer:innen der Gruppe A aus dem 4. FS und aus der Wissensgruppe mVK erzielten im DG 2 ein geringeres Gesamtergebnis als im DG 1. Schlussfolgerungen Teilnehmer:innen aus Gruppen mit geringem oder keinen Vorkenntnissen (Gruppe B; 2. FS; oVK) erhielten möglicherweise einen Lernvorteil durch die Arbeit mit dem Tool und konnten so den Wissensunterschied zu wissensstärkeren Gruppe (Gruppe A; 4. FS; mVK) ausgleichen.:1 Einleitung 1 2 Literaturübersicht 3 2.1 Hufrehe, Pododermatitis aseptica diffusa 3 2.1.1 Definition 3 2.1.2 Der Hufbeinträger, Apparatus suspensorius ossis ungulae 3 2.1.2.1 Dermale Anteile 4 2.1.2.2 Epidermale Anteile 4 2.1.2.3 Die Basalmembran 4 2.1.3 Makroskopisch-anatomische Veränderungen des Hufes während einer Hufreheerkrankung 6 2.1.4 Mikroskopisch-anatomische Veränderungen des Hufbeinträgers während einer Hufreheerkrankung 8 2.1.5 Metabolisch-induzierte Hufrehe 10 2.1.6 Toxininduzierte Hufrehe 12 2.1.7 Belastungsinduzierte Hufrehe 15 2.2 Mediendidaktik – Begriffsbestimmung 17 2.2.1 Digitale Medien 17 2.2.2 Multimedia 17 2.2.3 E-Learning, Blended Learning und didaktisches Design 17 2.3 Von der Theorie zur Praxis - Gestaltungsmerkmale auf Basis klassischer Lerntheorien und deren Anwendung in E-Learning-Programmen 18 2.3.1 Der Behaviorismus 18 2.3.2 Der Kognitivismus 19 2.3.3 Der Konstruktivismus 20 2.4 Codierungsformen (der Computertechnologie): 3D-Bilder, Animationen und Hypertext 21 2.4.1 Bilder (Definition, 3D-Bilder, Animation, Video) 21 2.4.2 Hypertext (Definition, Aufbau, Gefahren und Potentiale) 22 2.5 Lernen mit Text und Bild 23 2.5.1 Gestaltungsempfehlungen für Bilder und Texte 26 2.6 Interaktivität und selbstgesteuertes Lernen 27 2.6.1 Graphical User Interface 28 2.7 Interaktive Lehr- und Lernprogramme in der Veterinärmedizin 28 3 Material, Methoden 30 3.1 Entwicklung des Lehr- und Lernprogramms 30 3.1.1 Allgemeiner Herstellungsprozess 30 3.1.2 Formulierung von Anforderungskriterien und Festlegung von inhaltlichen Schwerpunkten für das Modul 30 3.1.3 Formulierung der Texte 32 3.1.4 Erstellen von Abbildungen für die Texte 33 3.1.5 Graphische Inhalte - 3D-Modelle, Animationen und Video 35 3.1.5.1 Entwicklung von 3D-Modellen 35 3.1.5.2 Animation der 3D-Modelle 37 3.1.5.3 Entwicklung des Videos „Hufrehe an der dermo-epidermalen Grenze“ 39 3.1.6 Entwicklung der Benutzeroberfläche (GUI) 40 3.1.7 Formatierung der Texte 42 3.1.8 Einpflegen der Modulelemente und Validierung 45 3.2 Evaluation des Lehr- und Lernprogramms 45 3.2.1 Testvorbereitung 45 3.2.1.1 Akquise der Studienteilnehmer:innen 45 3.2.1.2 Geräte 45 3.2.1.3 Test mit Single-Choice-Fragen 46 3.2.2 Studienteilnehmer:innen 46 3.2.3 Studiendesign 47 3.2.4 Gruppen, Abschnitte der Studiendurchgänge 47 3.2.4.1 Abschnitte erster Durchgang – Übersicht 48 3.2.4.2 Abschnitte zweiter Durchgang - Übersicht 49 3.2.5 Statistische Auswertung 49 4 Ergebnisse 51 4.1 Das „Laminitis Tool“ 51 4.1.1 Inhaltsverzeichnis 51 4.1.2 Texte und Abbildungen für die Texte 51 4.1.3 Graphische Inhalte: 3D-Modelle, Animationen, Video 52 4.1.3.1 3D-Modelle: Allgemeine Eigenschaften 52 4.1.3.2 3D-Modell und Animation „Klinik“ 53 4.1.3.3 3D-Modell und Animation „Huf“ 53 4.1.3.4 3D-Modell und Animation „Hufbeinträger“ 54 4.1.3.5 Video „Hufrehe an der dermo-epidermalen Grenze“ 56 4.1.4 GUI des Themenbereichs „Klinik“ 58 4.1.5 GUI des Themenbereichs „Huf“ 60 4.1.6 GUI des Themenbereichs „Histologie“ 61 4.1.7 Weitere Bedienelemente 62 4.2 Evaluation des Lernprogramms 62 4.2.1 Präevaluation 62 4.2.2 Eigenschaften der Studienteilnehmer:innen in den Gruppen 63 4.2.3 Einteilung in Wissensgruppen 64 4.2.4 Aufgabenqualität und Reliabilitätsprüfung des Tests mit Single-Choice-Fragen 65 4.2.5 Test mit Single-Choice-Fragen, Testergebnisse der Text- und Toolgruppe 66 4.2.6 Test mit Single-Choice-Fragen, Testergebnisse der Wissensgruppen für die Attribute „Fachsemester“ und „Vorkenntnisse“ 71 5 Diskussion 76 5.1 Entwicklung des „Laminitis Tools“ 76 5.1.1 Kooperation mit der Effigos AG 77 5.1.2 Toolinhalt und Inhaltsverzeichnis 78 5.1.3 Texte und Abbildungen für die Texte 81 5.1.4 Benutzeroberfläche – Navigation und Orientierungshilfen 82 5.1.5 Benutzeroberfläche – Konsistente und intuitive Bedienbarkeit 83 5.1.6 3D-Modelle 85 5.1.7 Animationen 86 5.1.8 Video 87 5.2 Lernförderlicher Effekt des „Laminitis Tools“ im Vergleich zu einem konventionellen Text 88 5.2.1 Einteilung von Wissensgruppen 89 5.2.2 Vergleich der Gruppen 89 5.2.3 Entwicklung der Gruppen im Verlauf der Studie 91 5.2.4 Betrachtung der Fachsemester 92 5.2.5 Betrachtung der Einzelfragen 93 5.2.6 Betrachtung der Fragengruppe 94 5.2.7 Aussagekraft der Evaluation 94 5.3 Fazit 95 6 Zusammenfassung 97 7 Summary 99 8 Literaturverzeichnis 101 9 Anhang 121 9.1 Entwicklung des Lernprogramms 121 9.1.1 Skript des Videos „Hufrehe an der dermo-epidermalen Grenze“ 121 9.1.2 Beispiel einer Änderungsanweisung für den Bauplan zum Design und zur Funktion der GUI 123 9.2 Evaluation des Lernprogramms 129 9.2.1 Studienaufruf 129 9.2.2 Anweisung zur Nutzung des Tools 130 9.2.3 Fragebogen zur Präevaluation 131 9.2.4 Angaben zum Ausbildungsstand der Studienteilnehmenden 132 9.2.5 Single-Choice-Fragen 133 9.2.6 Aufgabenqualität und Reliabilitätsprüfung des Tests mit Single-Choice-Fragen 139 9.2.7 Test mit Single-Choice-Fragen, Testergebnisse der Text- und Toolgruppe 151 9.2.8 Test mit Single-Choice-Fragen, Testergebnisse der Wissensgruppe für das Attribut „Fachsemester“ 152 9.2.9 Test mit Single-Choice-Fragen, Testergebnisse der Wissensgruppe für das Attribut „Vorkenntnisse“ 160 / Introduction In recent years the use and popularity of three-dimensional (3D) visualizations has grown substantially in the field of anatomy and veterinary anatomy. 3D anatomical models providing a potentially better and easier reception of spatial information compared to two-dimensional (2D) anatomical models was subject of various studies looking into the learning success. Objectives Aim of this study was to develop and subsequently evaluate a 3D anatomical program („Laminitis Tool“) as a module of the „Equine Hoof Explorer“ in cooperation with the Effigos AG. The „Laminitis Tool“ was designed to demonstrate the morphological changes (microscopic and macroscopic) before and during each stadium of equine laminitis by 3D visualizations and text modules summarizing the state of scientific knowledge. The hypothesis that the 3D learning program leads to a better learning success than a text was tested. Material und Methods Development of 3D visualizations and texts for the „Laminitis Tool“ was based on references allowing conclusions regarding clinical phase and experimental set up or cause of equine laminitis. The „Laminitis Tool“ was evaluated in two trials. 87 students of the second semester (2nd SM) and 26 students of the fourth semester (4th SM) were randomly allocated into group A and B. Each group consisted of nearly the same number of students from both semesters. In advance all participants had to subjectively assess their preexisting knowlegde of equine laminitis. According to the prior assessment groups „with preexisting knowledge“ (mVK) and „without preexisting knowledge“ (oVK) as well as groups 2nd SM and 4th SM were formed retrospectively. In the first trail (DG 1), group A was working with the illustrated text and group B with the 3D program. The set up was vice versa in the second trial (DG 2). The respective tool group received a brief instruction in how to use the program. After working with the particular medium students had to undergo a single choice test. Results The „Laminitis Tool“ is a 3D visualization software showing an animated 3D model of the outside (model „clinic“) and inside (model „hoof“) of the equine hoof as well as of the suspensory apparatus of the distal phalanx (model „histology“) before and after the onset of equine laminitis. Each model is accompanied by a modularized text. A video is providing information about the morphological changes at the dermo-epidermal layer of the suspensory apparatus of the distal phalanx. 56.4 % of the participants in group A and 48.3 % in group B ware rated mVK. In the first trial group A achieved a significantly better result in three out of ten questions than group B. Whereas there was only a significant difference in one out of ten questions in the second trial. According to the overall result group A was significantly better than group B (p = 0.0286) in the first trial, but there was no significant difference (p = 0.2071) between groups in the second trial. Participants in group A from the 2nd FS and from the knowledge group oVK were able to increase their overall performance from DG 1 to DG 2. Participants of group A from the 4th FS and from the knowledge group mVK achieved a lower overall result in DG 2 than in DG 1. Conclusion Participants of groups with lower knowledge (group B; 2nd SM; oVK) may have received a learning advantage from working with the tool and thus were able to compensate for the knowledge gap with more knowledgeable groups (group A; 4th SM; mVK).:1 Einleitung 1 2 Literaturübersicht 3 2.1 Hufrehe, Pododermatitis aseptica diffusa 3 2.1.1 Definition 3 2.1.2 Der Hufbeinträger, Apparatus suspensorius ossis ungulae 3 2.1.2.1 Dermale Anteile 4 2.1.2.2 Epidermale Anteile 4 2.1.2.3 Die Basalmembran 4 2.1.3 Makroskopisch-anatomische Veränderungen des Hufes während einer Hufreheerkrankung 6 2.1.4 Mikroskopisch-anatomische Veränderungen des Hufbeinträgers während einer Hufreheerkrankung 8 2.1.5 Metabolisch-induzierte Hufrehe 10 2.1.6 Toxininduzierte Hufrehe 12 2.1.7 Belastungsinduzierte Hufrehe 15 2.2 Mediendidaktik – Begriffsbestimmung 17 2.2.1 Digitale Medien 17 2.2.2 Multimedia 17 2.2.3 E-Learning, Blended Learning und didaktisches Design 17 2.3 Von der Theorie zur Praxis - Gestaltungsmerkmale auf Basis klassischer Lerntheorien und deren Anwendung in E-Learning-Programmen 18 2.3.1 Der Behaviorismus 18 2.3.2 Der Kognitivismus 19 2.3.3 Der Konstruktivismus 20 2.4 Codierungsformen (der Computertechnologie): 3D-Bilder, Animationen und Hypertext 21 2.4.1 Bilder (Definition, 3D-Bilder, Animation, Video) 21 2.4.2 Hypertext (Definition, Aufbau, Gefahren und Potentiale) 22 2.5 Lernen mit Text und Bild 23 2.5.1 Gestaltungsempfehlungen für Bilder und Texte 26 2.6 Interaktivität und selbstgesteuertes Lernen 27 2.6.1 Graphical User Interface 28 2.7 Interaktive Lehr- und Lernprogramme in der Veterinärmedizin 28 3 Material, Methoden 30 3.1 Entwicklung des Lehr- und Lernprogramms 30 3.1.1 Allgemeiner Herstellungsprozess 30 3.1.2 Formulierung von Anforderungskriterien und Festlegung von inhaltlichen Schwerpunkten für das Modul 30 3.1.3 Formulierung der Texte 32 3.1.4 Erstellen von Abbildungen für die Texte 33 3.1.5 Graphische Inhalte - 3D-Modelle, Animationen und Video 35 3.1.5.1 Entwicklung von 3D-Modellen 35 3.1.5.2 Animation der 3D-Modelle 37 3.1.5.3 Entwicklung des Videos „Hufrehe an der dermo-epidermalen Grenze“ 39 3.1.6 Entwicklung der Benutzeroberfläche (GUI) 40 3.1.7 Formatierung der Texte 42 3.1.8 Einpflegen der Modulelemente und Validierung 45 3.2 Evaluation des Lehr- und Lernprogramms 45 3.2.1 Testvorbereitung 45 3.2.1.1 Akquise der Studienteilnehmer:innen 45 3.2.1.2 Geräte 45 3.2.1.3 Test mit Single-Choice-Fragen 46 3.2.2 Studienteilnehmer:innen 46 3.2.3 Studiendesign 47 3.2.4 Gruppen, Abschnitte der Studiendurchgänge 47 3.2.4.1 Abschnitte erster Durchgang – Übersicht 48 3.2.4.2 Abschnitte zweiter Durchgang - Übersicht 49 3.2.5 Statistische Auswertung 49 4 Ergebnisse 51 4.1 Das „Laminitis Tool“ 51 4.1.1 Inhaltsverzeichnis 51 4.1.2 Texte und Abbildungen für die Texte 51 4.1.3 Graphische Inhalte: 3D-Modelle, Animationen, Video 52 4.1.3.1 3D-Modelle: Allgemeine Eigenschaften 52 4.1.3.2 3D-Modell und Animation „Klinik“ 53 4.1.3.3 3D-Modell und Animation „Huf“ 53 4.1.3.4 3D-Modell und Animation „Hufbeinträger“ 54 4.1.3.5 Video „Hufrehe an der dermo-epidermalen Grenze“ 56 4.1.4 GUI des Themenbereichs „Klinik“ 58 4.1.5 GUI des Themenbereichs „Huf“ 60 4.1.6 GUI des Themenbereichs „Histologie“ 61 4.1.7 Weitere Bedienelemente 62 4.2 Evaluation des Lernprogramms 62 4.2.1 Präevaluation 62 4.2.2 Eigenschaften der Studienteilnehmer:innen in den Gruppen 63 4.2.3 Einteilung in Wissensgruppen 64 4.2.4 Aufgabenqualität und Reliabilitätsprüfung des Tests mit Single-Choice-Fragen 65 4.2.5 Test mit Single-Choice-Fragen, Testergebnisse der Text- und Toolgruppe 66 4.2.6 Test mit Single-Choice-Fragen, Testergebnisse der Wissensgruppen für die Attribute „Fachsemester“ und „Vorkenntnisse“ 71 5 Diskussion 76 5.1 Entwicklung des „Laminitis Tools“ 76 5.1.1 Kooperation mit der Effigos AG 77 5.1.2 Toolinhalt und Inhaltsverzeichnis 78 5.1.3 Texte und Abbildungen für die Texte 81 5.1.4 Benutzeroberfläche – Navigation und Orientierungshilfen 82 5.1.5 Benutzeroberfläche – Konsistente und intuitive Bedienbarkeit 83 5.1.6 3D-Modelle 85 5.1.7 Animationen 86 5.1.8 Video 87 5.2 Lernförderlicher Effekt des „Laminitis Tools“ im Vergleich zu einem konventionellen Text 88 5.2.1 Einteilung von Wissensgruppen 89 5.2.2 Vergleich der Gruppen 89 5.2.3 Entwicklung der Gruppen im Verlauf der Studie 91 5.2.4 Betrachtung der Fachsemester 92 5.2.5 Betrachtung der Einzelfragen 93 5.2.6 Betrachtung der Fragengruppe 94 5.2.7 Aussagekraft der Evaluation 94 5.3 Fazit 95 6 Zusammenfassung 97 7 Summary 99 8 Literaturverzeichnis 101 9 Anhang 121 9.1 Entwicklung des Lernprogramms 121 9.1.1 Skript des Videos „Hufrehe an der dermo-epidermalen Grenze“ 121 9.1.2 Beispiel einer Änderungsanweisung für den Bauplan zum Design und zur Funktion der GUI 123 9.2 Evaluation des Lernprogramms 129 9.2.1 Studienaufruf 129 9.2.2 Anweisung zur Nutzung des Tools 130 9.2.3 Fragebogen zur Präevaluation 131 9.2.4 Angaben zum Ausbildungsstand der Studienteilnehmenden 132 9.2.5 Single-Choice-Fragen 133 9.2.6 Aufgabenqualität und Reliabilitätsprüfung des Tests mit Single-Choice-Fragen 139 9.2.7 Test mit Single-Choice-Fragen, Testergebnisse der Text- und Toolgruppe 151 9.2.8 Test mit Single-Choice-Fragen, Testergebnisse der Wissensgruppe für das Attribut „Fachsemester“ 152 9.2.9 Test mit Single-Choice-Fragen, Testergebnisse der Wissensgruppe für das Attribut „Vorkenntnisse“ 160

Page generated in 0.0837 seconds