11 |
VLSI Implementation of Key Components in A Mobile Broadband ReceiverHuang, Yulin January 2009 (has links)
Digital front-end and Turbo decoder are the two key components in the digital wireless communication system. This thesis will discuss the implementation issues of both digital front-end and Turbo decoder.The structure of digital front-end for multi-standard radio supporting wireless standards such as IEEE802.11n, WiMAX, 3GPP LTE is investigated in the thesis. A top-to-down design methods. 802.11n digital down-converter is designed from Matlab model to VHDL implementation. Both simulation and FPGA prototyping are carried out.As another significant part of the thesis, a parallel Turbo decoder is designed and implemented for 3GPPLTE. The block size supported ranges from 40 to 6144 and the maximum number of iteration is eight.The Turbo decoder will use eight parallel SISO units to reach a throughput up to 150Mits.
|
12 |
HARQ Systems: Resource Allocation, Feedback Error Protection, and Bits-to-Symbol MappingsTumula V. K., Chaitanya January 2013 (has links)
Reliability of data transmission is a fundamental problem in wireless communications. Fading in wireless channels causes the signal strength to vary at the receiver and this results in loss of data packets. To improve the reliability, automatic repeat request (ARQ) schemes were introduced. However these ARQ schemes suffer from a reduction in the throughput. To address the throughput reduction, conventional ARQ schemes were combined with forward error correction (FEC) schemes to develop hybrid-ARQ (HARQ) schemes. For improving the reliability of data transmission, HARQ schemes are included in the present wireless standards like LTE, LTE-Advanced and WiMAX. Conventional HARQ systems use the same transmission power and the same number of channel uses in different ARQ rounds. However this is not optimal in terms of minimizing the average transmit power or the average energy spent for successful transmission of a data packet. We address this issue in the first part of the dissertation, where we consider optimal resource allocation in HARQ systems with a limit on the maximum number of allowed transmissions for a data packet. Specifically, we consider the problem of minimizing the packet drop probability (PDP) under an average transmit power constraint or equivalently minimizing the average transmit power under a fixed PDP constraint. We consider both incremental redundancy (IR)-based and Chase combining (CC)-based HARQ systems in our work. For an IR-HARQ system, for the special case of two allowed transmissions for each packet, we provide a solution for the optimal number of channel uses and the optimal power to be used in each ARQ round. For a CC-HARQ system, we solve the problem of optimal power allocation in i.i.d. Rayleigh fading channels as well as correlated Rayleigh fading channels. For the CC-HARQ case, we also provide a low complexity geometric programming (GP) solution using an approximation of the outage probability expression. HARQ systems conventionally use one bit acknowledgement (ACK)/negative ACK (NACK) feedback from the receiver to the transmitter. In the 3GPP-LTE systems, one method for sending these HARQ acknowledgement bits is to jointly code them with the other control signaling information using a specified Reed-Muller code consisting of 20 coded bits. Even though the resources used for sending this control signaling information can inherently provide a diversity gain, the Reed-Muller code with such a short block size is not good at extracting all of the available diversity. To address this issue, in the second part of this dissertation, we propose two new methods: i) based on complex-field coding (CFC), and ii) using repetition across frequency bands, to extract the inherent diversity available in the channel resources and improve the error protection for the HARQ acknowledgement bits along with the other control signaling information. In the second part of the dissertation, we also propose a new signal space diversity (SSD) scheme, which results in transmit signals having constant envelope (CE). The proposed CE-SSD scheme results in a better overall power efficiency due to the reduced back-off requirements on the radio frequency power amplifier. Moreover, the proposed CE-SSD technique can be useful for application scenarios involving transmission of small number of information bits, such as in the case of control signaling information transmission. In conventional HARQ systems, during the retransmission phase, the channel resources are exclusively used for the retransmitted data packet. This is not optimal in terms of efficient resource utilization. For efficient utilization of channel resources during the retransmissions, a superposition coding (SPC) based HARQ scheme was proposed in the literature. In an SPC based HARQ system, an erroneous packet is transmitted together with a new data packet by superposition in the Euclidean space. In the final part of this dissertation, we study performance of different bits-to-symbol mappings for such an SPC based HARQ system.
|
13 |
Entwicklung und Analyse einer SDR-basierten Cell Search Procedure für LTEWandel, Sonny 16 April 2024 (has links)
In dieser Bachelorarbeit wird eine LTE Cell Search Procedure auf Basis von SDR entwickelt, um eine Synchronisation mit einem LTE-System in Zeit und Frequenz zu erreichen. Dabei werden mehrere Verarbeitungsblöcke implementiert, die zur LTE Cell Search Procedure gehören. Diese beinhalten die Erkennung des Integer Frequency Offsets (IFO), Primary Synchronisation Signals (PSS), Fractional Frequency Offset (FFO) und des Secondary Synchronisation Signals (SSS). Die Arbeit umfasst eine Literaturrecherche, die Implementierung der Verarbeitungsblöcke, die Simulation verschiedener Szenarien, statistische Analysen und die Anwendung auf ein gemessenes LTE-Signal. Sie liefert Antworten auf spezifische Forschungsfragen zur Effizienz, zum Einfluss des SNR und des CFO, sowie zur Eignung für reale LTE-Systeme. Darüber hinaus wird ein Ausblick auf mögliche Anwendungen im Kontext von 5G NR, WLAN und Erweiterungen gegeben.:Kurzfassung.................................... III
Abbildungsverzeichnis .............................. VII
Tabellenverzeichnis................................ VIII
Codeverzeichnis.................................. IX
Abkürzungsverzeichnis .............................. X
Symbolverzeichnis ................................ XIV
1. Einleitung................................... 1
1.1. Forschungsfragen ............................ 1
1.2. Untersuchungsdesign .......................... 2
2. Grundlagen .................................. 3
2.1. Zadoff-Chu (ZC)-Sequenzen ...................... 3
2.2. Maximum Length (M)-Sequenzen................... 5
2.3. Orthogonal Frequency-Division Multiplexing (OFDM) ................ 7
2.4. Orthogonal Frequency-Division Multiplexing (OFDM): Kanal und
Equalization............................... 10
2.5. Orthogonal Frequency-Division Multiplexing (OFDM): Carrier Frequency
Offset (CFO).......................... 11
2.6. Carrier Frequency Offset (CFO)-Erkennung ................... 14
2.7. Short Time Fourier Transform (STFT) und Spektrogramm ......... 16
2.8. Software Defined Radio (SDR) .................... 17
2.9. 3rd Generation Partnership Project (3GPP)-Long Term Evolution
(LTE).................................. 18
3. Praktische Untersuchung ........................... 23
3.1. Simulationsumgebung ......................... 27
3.2. Software Defined Radio (SDR)-basierte Long Term Evolution (LTE)-
Messung................................. 29
3.3. Integer Carrier Frequency Offset (IFO)-Erkennung ............ 30
3.4. Primary Synchronization Signal (PSS)-Erkennung .............. 38
3.5. Fractional Carrier Frequency Offset (FFO)-Erkennung ........ 44
3.6. Secondary Synchronization Signal (SSS)-Erkennung ............ 49
3.7. Simulation der gesamten Implementierung .................... 57
4. Zusammenfassung und Ausblick ....................... 62
Literaturverzeichnis................................ 65
|
14 |
Paramétrage Dynamique et Optimisation Automatique des Réseaux Mobiles 3G et 3G+Nasri, Ridha 23 January 2009 (has links) (PDF)
La télécommunication radio mobile connait actuellement une évolution importante en termes de diversité de technologies et de services fournis à l'utilisateur final. Il apparait que cette diversité complexifie les réseaux cellulaires et les opérations d'optimisation manuelle du paramétrage deviennent de plus en plus compliquées et couteuses. Par conséquent, les couts d'exploitation du réseau augmentent corrélativement pour les operateurs. Il est donc essentiel de simplifier et d'automatiser ces taches, ce qui permettra de réduire les moyens consacrés à l'optimisation manuelle des réseaux. De plus, en optimisant ainsi de manière automatique les réseaux mobiles déployés, il sera possible de retarder les opérations de densification du réseau et l'acquisition de nouveaux sites. Le paramétrage automatique et optimal permettra donc aussi d'étaler voire même de réduire les investissements et les couts de maintenance du réseau. Cette thèse introduit de nouvelles méthodes de paramétrage automatique (auto-tuning) des algorithmes RRM (Radio Resource Management) dans les réseaux mobiles 3G et au delà du 3G. L'auto-tuning est un processus utilisant des outils de contrôle comme les contrôleurs de logique floue et d'apprentissage par renforcement. Il ajuste les paramètres des algorithmes RRM afin d'adapter le réseau aux fluctuations du trafic. Le fonctionnement de l'auto-tuning est basé sur une boucle de régulation optimale pilotée par un contrôleur qui est alimenté par les indicateurs de qualité du réseau. Afin de trouver le paramétrage optimal du réseau, le contrôleur maximise une fonction d'utilité, appelée aussi fonction de renforcement. Quatre cas d'études sont décrits dans cette thèse. Dans un premier temps, l'auto-tuning de l'algorithme d'allocation des ressources radio est présenté. Afin de privilégier les utilisateurs du service temps réel (voix), une bande de garde est réservée pour eux. Cependant dans le cas ou le trafic temps réel est faible, il est important d'exploiter cette ressource pour d'autres services. L'auto-tuning permet donc de faire un compromis optimal de la qualité perçue dans chaque service en adaptant les ressources réservées en fonction du trafic de chaque classe du service. Le second cas est l'optimisation automatique et dynamique des paramètres de l'algorithme du soft handover en UMTS. Pour l'auto-tuning du soft handover, un contrôleur est implémenté logiquement au niveau du RNC et règle automatiquement les seuils de handover en fonction de la charge radio de chaque cellule ainsi que de ses voisines. Cette approche permet d'équilibrer la charge radio entre les cellules et ainsi augmenter implicitement la capacité du réseau. Les simulations montrent que l'adaptation des seuils du soft handover en UMTS augmente la capacité de 30% par rapport au paramétrage fixe. L'approche de l'auto-tuning de la mobilité en UMTS est étendue pour les systèmes LTE (3GPP Long Term Evolution) mais dans ce cas l'auto-tuning est fondé sur une fonction d'auto-tuning préconstruite. L'adaptation des marges de handover en LTE permet de lisser les interférences intercellulaires et ainsi augmenter le débit perçu pour chaque utilisateur du réseau. Finalement, un algorithme de mobilité adaptative entre les deux technologies UMTS et WLAN est proposé. L'algorithme est orchestré par deux seuils, le premier est responsable du handover de l'UMTS vers le WLAN et l'autre du handover dans le sens inverse. L'adaptation de ces deux seuils permet une exploitation optimale et conjointe des ressources disponibles dans les deux technologies. Les résultats de simulation d'un réseau multi-systèmes exposent également un gain important en capacité.
|
15 |
Etude et implémentation d'une architecture de décodage générique et flexible pour codes correcteurs d'erreurs avancésDION, Jean 05 November 2013 (has links) (PDF)
Le codage de canal est une opération mathématique qui améliore la qualité des transmissions numériques en corrigeant les bits erronés en réception. Les contraintes des usages comme la qualité de réception, les débits d'utilisation, la latence de calcul, la surface ou encore la consommation électrique favorisent l'usage de différents codes dans la standardisation des protocoles de communication. La tendance industrielle est à la convergence des réseaux de communication pour des usages variés. Ce large choix de codage devient un handicap pour la conception de transmetteurs à bas coûts. Les réseaux médias favorisent des codes correcteurs d'erreurs avancés comme les turbocodes et les codes LDPC pour répondre aux contraintes de qualité de réception. Or ces procédés ont un coût de décodage important sur les récepteurs finaux. Une architecture adaptée à plusieurs types de codes capable d'évoluer en fonction d'une modification du protocole d'accès devient inévitable pour élaborer de nouveaux scénarios d'usages. Ce mémoire présente le principe du codage de canal et la plupart des codes correcteurs d'erreurs avancés sélectionnés dans les standards de communication courants. Les caractéristiques communes des codes QC-LDPC et des turbocodes sont soulignées. Les principaux algorithmes ainsi que certaines architectures de décodage sont présentés. La complexité matérielle des principaux algorithmes de décodage est évaluée. Ils sont comparés pour un même code et à un niveau de correction équivalent pour les codes QC-LDPC. Une étude similaire est réalisée sur les turbocodes. Les algorithmes de décodage sont appliqués sur des codes de tailles et de rendements proches et dimensionnés pour atteindre une correction similaire afin de sélectionner un algorithme de décodage conjoint aux deux familles de code. Les codes QC-LDPC et les turbocodes se structurent à l'aide d'une représentation en treillis commune. La technique de fenêtrage couramment appliquée au décodage des turbocodes est étudiée pour le décodage d'un code QC-LDPC. Enfin, l'entrelacement des codes QC-LDPC est mis en évidence et reconsidéré en fonction des contraintes matérielles. Un coeur de décodage de treillis compatible avec les standards 3GPP LTE et IEEE 802.11n est proposé. Plusieurs structures de décodage sont ensuite introduites incorporant un ou plusieurs de ces coeurs. L'intégration sur cible FPGA est détaillée. Un scénario d'utilisation avec un contexte de décodage évoluant à chaque message reçu est proposé ce qui souligne l'impact de la reconfiguration sur les débits de décodage. La structure multistandard nécessite 4,2 % (respectivement 5,3 %) de ressources matérielles supplémentaires à une structure compatible avec le standard 3GPP LTE (resp. IEEE 802.11n) seul. La dégradation du débit maximal due à la reconfiguration entre le décodage des mots de code est d'au plus 1 %. Une architecture à plusieurs coeurs est également portée sur une cible ASIC de 65 nm. Cette architecture fonctionne à une fréquence de 500 Mhz sur une surface de 2,1 mm2 décodant les mots de code 3GPP LTE et IEEE 802.11n, et acceptant une reconfiguration dynamique entre deux mots de code consécutifs.
|
16 |
Inter-cell interference coordination in wireless networks / Coordination des interférences intercellulaires dans les réseaux sans-filYassin, Mohamad 13 November 2015 (has links)
Grâce aux avancées technologiques dans le domaine des réseaux cellulaires et des équipements mobiles, le nombre d'applications multimédia à haut débit dans les réseaux mobiles ne cesse d'augmenter. On prévoit que le trafic de données dans les réseaux mobiles en 2017 sera 13 fois plus important que celui en 2012. Pour satisfaire aux besoins des équipements mobiles, de nouvelles approches pour la gestion des ressources radio et des puissances de transmission sont requises.Dans le cadre de cette thèse, on s'intéresse à proposer des solutions pour remédier aux problèmes des interférences intercellulaires dans les réseaux mobiles de dernière génération. Nous enquêtons d'une manière exhaustive les différentes techniques de coordination des interférences intercellulaires existantes. Ces techniques sont qualitativement comparées, puis classées selon le taux de coopération requis entre les différentes stations de base, mais aussi selon leurs principes de fonctionnement. Nous abordons également le problème multicellulaire d'allocation des ressources et des puissances de transmission d'une manière centralisée. Nous formulons ce problème d'optimisation centralisé, puis nous le décomposons en deux sous-problèmes indépendants : l'allocation de ressources et l'allocation des puissances de transmission. De plus, une approche distribuée basée sur la théorie des jeux est proposée pour l'allocation des puissances de transmission. Les techniques centralisées de minimisation des interférences intercellulaires offrent la solution optimale au prix d'une grande charge de signalisation. Par contre, les solutions décentralisées réduisent le trafic de signalisation sans garantir l'optimalité de la solution obtenue. Nous proposons ensuite une heuristique de contrôle de puissance qui modifie localement l'allocation des puissances de transmission de manière à éviter le gaspillage d'énergie et pour réduire les interférences ressenties par les utilisateurs des stations de base voisines. Nous proposons également une technique autonome qui gère la distribution des ressources radio entre les différentes zones de chaque cellule. Cette technique répond aux besoins des utilisateurs dans chaque zone en adaptant la distribution des ressources d'une manière dynamique. Nous abordons aussi le compromis entre les techniques de gestion d'interférences intercellulaires centralisées et décentralisées. Nous proposons une approche hybride où l'allocation des ressources radio et des puissances de transmission est faite d'une manière coopérative entre les différentes cellules. Dans un premier lieu, les cellules voisines collaborent afin d'ajuster les puissances de transmission allouées aux ressources radio. Ensuite, la distribution des ressources entre les différentes zones de chaque cellule est modifiée localement, selon les besoins des utilisateurs dans chaque zone. / The exponentially increasing demand for mobile broadband communications have led to the dense deployment of cellular networks with aggressive frequency reuse patterns. The future Fifth Generation (5G) networks are expected to overcome capacity and throughput challenges by adopting a multi-tier architecture where several low-power Base Stations (BSs) are deployed within the coverage area of the macro cell. However, Inter-Cell Interference (ICI) caused by the simultaneous usage of the same spectrum in different cells, creates severe problems. ICI reduces system throughput and network capacity, and has a negative impact on cell-edge User Equipment (UE) performance. Therefore, Inter-Cell Interference Coordination (ICIC) techniques are required to mitigate the impact of ICI on system performance. In this thesis, we address the resource and power allocation problem in multiuser Orthogonal Frequency Division Multiple Access (OFDMA) networks such as LTE/LTE-A networks and dense small cell networks. We start by overviewing the state-of-the-art schemes, and provide an exhaustive classification of the existing ICIC approaches. This qualitative classification is followed by a quantitative investigation of several interference mitigation techniques. Then, we formulate a centralized multi-cell joint resource and power allocation problem, and prove that this problem is separable into two independent convex optimization problems. The objective function of the formulated problem consists in maximizing system throughput while guaranteeing throughput fairness between UEs. ICI is taken into account, and resource and power allocation is managed accordingly in a centralized manner. Furthermore, we introduce a decentralized game-theoretical method to solve the power allocation problem without the need to exchange signaling messages between the different cells. We also propose a decentralized heuristic power control algorithm based on the received Channel Quality Indication (CQI) feedbacks. The intuition behind this algorithm is to avoid power wastage for UEs that are close to the serving cell, and reducing ICI for UEs in the neighboring cells. An autonomous ICIC scheme that aims at satisfying throughput demands in each cell zone is also introduced. The obtained results show that this technique improves UE throughput fairness, and it reduces the percentage of unsatisfied UEs without generating additional signaling messages. Lastly, we provide a hybrid ICIC scheme as a compromise between the centralized and the decentralized approaches. For a cluster of adjacent cells, resource and power allocation decisions are made in a collaborative manner. First, the transmission power is adjusted after receiving the necessary information from the neighboring cells. Second, resource allocation between cell zones is locally modified, according to throughput demands in each zone.
|
Page generated in 0.0278 seconds