• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 359
  • 55
  • 43
  • 43
  • 37
  • 16
  • 16
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 737
  • 737
  • 252
  • 248
  • 244
  • 109
  • 106
  • 85
  • 57
  • 51
  • 51
  • 48
  • 48
  • 45
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Synthèse de matériaux alvéolaires base carbures par transformation d'architectures carbonées ou céramiques par RCVD/CVD : application aux récepteurs solaires volumiques / Synthesis of porous materials (carbide type) with carbon or ceramic substrates transformation by RCVD/CVD : applications for solar receivers

Baux, Anthony 25 October 2018 (has links)
L’objectif était de concevoir et réaliser des architectures alvéolaires performantes pour les récepteurs solaires volumétriques des futures centrales thermodynamiques. Trois stratégies différentes sont envisagées pour l’ébauche des préformes carbones ou céramiques : (i) la synthèse de matériaux biomorphiques issus de la découpe de balsa, (ii) l’élaboration de structures céramiques par projection de liant et (iii) la réplication de structures polymères réalisées par impression 3D, à l’aide d’une résine précurseur de carbone ou céramique. Dans tous les cas, les préformes crues sont converties par pyrolyse en C ou SiC et une étape d’infiltration/revêtement de SiC par CVD (Chemical Vapor Deposition) achève la fabrication des structures céramiques. Une étape intermédiaire de RCVD (Reactive CVD) a été mise en œuvre au cours de la première voie, afin de convertir la structure carbonée microporeuse en TiC. La composition, la microstructure et l’architecture poreuse des structures céramiques ont tout d’abord été caractérisées. Les caractéristiques des matériaux les plus pertinentes, compte tenu de l’application en tant qu’absorbeur solaire, ont ensuite été examinées. Les propriétés thermomécaniques et la résistance à l’oxydation ont ainsi été caractérisées en priorité. La perméabilité et les propriétés thermo-radiatives, qui sont également deux facteurs importants pour l’application, ont également été considérées. / The aim is to design and create efficient cellular architectures for volumetric solar receivers used in the future thermodynamic power plants. Three strategies are considered for the creation of ceramic or carbon preforms: (i) the synthesis of biomorphic materials resulting from the cutting of balsa, (ii) the elaboration of ceramic structures by binder jetting and (iii) the replication of polymer structures made by 3D printing, using a carbon or ceramic precursor resin. In all cases, the green preforms are converted by pyrolysis to C or SiC and an infiltration step / SiC coating by CVD (Chemical Vapor Deposition) completes the manufacture of ceramic structures. An intermediate stage of RCVD (Reactive CVD) was implemented during the first strategy, in order to convert the microporous carbonaceous structure into TiC. The composition, the microstructure and the porous architecture of the ceramic structures were first characterized. The characteristics of the most relevant materials, considering the application as a solar receiver, were then examined. The thermomechanical properties and the oxidation resistance have thus been characterized in priority. Permeability and thermo-radiative properties, which are also two important factors for application, were also considered.
402

Sintering and Characterizations of 3D Printed Bronze Metal Filament

Oyedotun Ayeni (5931011) 16 January 2019 (has links)
<p>Metal 3D printing typically requires high energy laser or electron sources. Recently, 3D printing using metal filled filaments becomes available which uses PLA filaments filled with metal powders (such as copper, bronze, brass, and stainless steel). Although there are some studies on their printability, the detailed study of their sintering and characterizations is still missing.</p> <p>In this study, the research is focused on 3D printing of bronze filaments. Bronze is a popular metal for many important uses. The objectives of this research project are to study the optimal processing conditions (like printer settings, nozzle, and bed temperatures) to print bronze metal filament, develop the sintering conditions (temperature and duration), and characterization of the microstructure and mechanical properties of 3D printed specimens to produce strong specimens.</p> <p>The thesis includes three components: (1) 3D printing and sintering at selected conditions, following a design of experiment (DOE) principle; (2) microstructure and compositional characterizations; and (3) mechanical property characterization. The results show that it is feasible to print using bronze filaments using a typical FDM machine with optimized printing settings. XRD spectrums show that there is no effect of sintering temperature on the composition of the printed parts. SEM images illustrate the porous structure of the printed and sintered parts, suggesting the need to optimize the process to improve the density. The micro hardness and three-point bending tests show that the mechanical strengths are highly related to the sintering conditions. This study provides important information of applying the bronze filament in future engineering applications.</p>
403

In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits

Dolati, Farzaneh 01 December 2014 (has links)
Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this thesis, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon nanotubes (CNTs) to enhance their mechanical properties and bioprintability. The generation of vascular conduit with a natural polymer hydrogel such as alginate needs to have improved mechanical properties in order to biomimic the natural vascular system. Carbon nanotube (CNT) is one of the best candidates for this goal because it is known as the strongest material and possesses a simple structure. In this thesis, multi-wall carbon nanotube (MWCNT) is dispersed homogenously in the hydrogel and fabricated through an extrusion-based system.In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication. It was concluded that MWCNT has a significant effect on mechanical properties, vascular conduit swelling ratio and biological characterization in short-term and long-term cellular viability.
404

DEVELOPMENT OF AN ELECTROSPUN AND 3D PRINTED CELLULAR DELIVERY DEVICE FOR DERMAL WOUND HEALING

Clohessy, Ryan M 01 January 2017 (has links)
The goal of this research was to develop a system of individualized medicine that could be applied to dermal wounds serving as a wound dressing and synthetic extracellular matrix while delivering stem cells to the wound bed. First, fabrication parameters for electrospinning polymer fibers were determined. This involved evaluating fiber morphology with respect to polymer selection and solution concentration. Next, construct fabrication was examined to produce an integrated void space, or cargo area, suitable to maintain stem cells. In vitro studies to ensure stem cell viability and phenotype were conducted, and results supported the notion that cells could be administered to the wound site through construct pre-seeding. Lastly, in vivostudies were conducted to evaluate the construct as an applied biomaterial and as a cellular delivery device. Wound closure and quality were assessed, and neo-vascularization quantified. This project will provide insight into the tissue engineering field regarding cell-based therapies and dermal wound healing.
405

Síntese via catálise enzimática de polímeros insaturados derivados de pantenol para aplicações em impressão 3D / Synthesis via enzymatic catalysis of unsaturated polymers derived from panthenol for application in 3D printing

Minatelli, Daniel Franco 06 June 2019 (has links)
Nos últimos anos, a impressão 3D vem se colocando como uma técnica fundamental na produção de novos biomateriais; a estereolitografia, em particular, permite que sejam impressos arcabouços para suporte celular de arquiteturas altamente complexas. Observa-se, todavia, uma oferta pouco significante de resinas passíveis de impressão, uma vez que o mesmo material deve reunir características como biocompatibilidade, biodegradabilidade e, em algumas técnicas de impressão, potencial fotocurável. Este trabalho concentrou-se em sintetizar poliésteres inéditos - derivados de pantenol - biodegradáveis e bioabsorvíveis via policondensação catalisada pela lipase B da Candida antarctica. Além disso, pretendeu-se incluir insaturações de modo a permitir fotorreticulação dos mesmos. Foram produzidos dois tipos de poliésteres insaturados: (1) com insaturações endo (pertencentes à cadeia principal do polímero), a partir de copolímeros produzidos de pantenol e mistura de diésteres saturados (adipato de dietila e sebacato de dietila) e diésteres insaturados (fumarato de dietila e glutaconato de dietila); (2) com insaturações exo (pertencentes às cadeias secundárias do polímero), a partir da acrilação da hidroxila secundária de pantenol de poliésteres saturados do mesmo. A caracterização por cromatografia de permeação em gel mostrou a produção de7 polímeros na faixa de massa molar entre 2000 e 5000 Da. Todas as estruturas foram confirmadas por 1H RMN. A fotocura do material foi testada a partir de soluções dos poliésteres contendo fotoiniciador (BAPO) e correticulantes (NIPAM, NVPM e VIM). Após irradiação com radiação UV em 254 nm por diferentes tempos, foram produzidos filmes que puderam ter sua fração sol/gel determinadas, bem como suas características de intumescimento. Além de serem os primeiros poliésteres de pantenol observados até o momento na literatura, os materiais sintetizados neste trabalho provaram potencial de uso em impressoras 3D, visto que foram produzidos filmes fotorreticulados após cerca de 1 minuto de irradiação. / This work focused on synthesizing unpublished biodegradable and bioabsorbable panthenol-derived polyesters via polycondensation catalyzed by Candida antarctica lipase B. In addition, it was intended to include unsaturations to enable photocrosslinking in the final material. Two types of unsaturated polyesters were synthesized: (1) with unsaturations \"endo\" (belonging to the main polymer chain), from copolymers made of panthenol and mixtures of saturated diesters (adipate, diethyl sebacate and diethyl) and unsaturated diesters (diethyl fumarate and diethyl glutaconate); (2) with \"exo\" unsaturations (not in the main polymer chain), from the acrylation of the secondary panthenol hydroxyl group of the first saturated polyester.9 Characterization by gel permeation chromatography showed the production of polymers in the range of molar mass between 2000 and 5000 Da. All structures were confirmed by 1 H NMR. The photocrosslinking capability of the material was tested from polyester solutions containing photoinitiator (BAPO) and crosslinkers (NIPAM, NVPM, and VIM). After irradiation with UV radiation at 254 nm for different times, films were produced that could have their sol / gel fraction determined, as well as their swelling characteristics. In addition to being the first panthenol polyesters observed so far in the literature, the materials synthesized in this work proved potential use in 3D printers since photocrosslinked films were produced after about 1 minute of irradiation.
406

Advanced technology innovation mapping tool to support technology commercialization

Felkl, Jakub, 1982- 18 February 2014 (has links)
This work outlines an Innovation Gap in technology commercialization and presents a novel tool, the Advanced Technology Innovation Mapping (ATIM) tool to address this gap. The tool aims to support technology commercialization in early stages of & prior to the New Product Development Process. The dissertation includes a detailed rationale, description, history, similar and originating methods for this tool based on Value Engineering and Function Maps for Design. This work also demonstrates on several example studies the use of the tool and evaluates via an exploratory study the usefulness of the tool. Research tests the tool in educational and training programs at the University of Texas at Austin and finds that the tool improves user understating of majority of important factors for technology commercialization (customer, technology, development activities). User feedback supports these conclusions. In the future the tool could be further expanded, more standardized and improved. Additionally, the work proposes further ways to study the tool in different settings and with groups of different sizes beyond this early exploratory study. / text
407

Επανασχεδιασμός ρομποτικού λαπαροσκοπικού εργαλείου / Redesign of a robotic laparoscopic tool

Παπαδόπουλος, Γεώργιος Μάριος 13 January 2015 (has links)
Το θέμα αυτής της διπλωματικής εργασίας είναι ο σχεδιασμός, η παραγωγή, η κατασκευή και ο έλεγχος ενός χειρουργικού ρομποτικού εργαλείου με βελτιωμένα χαρακτηριστικά από το προηγούμενο πρωτότυπο. Το λαπαροσκοπικό εργαλείο αποτελείται από συνδέσμους σε σειρά οι οποίοι ενεργοποιούνται με μορφομνήμονα καλώδια, οι οποίοι λειτουργούν σαν δυαδικοί ενεργοποιητές με δύο πιθανές καταστάσεις. Κάθε σύνδεσμος αποτελείται από τρεις πρισματικούς ενεργοποιητές, οι οποίοι δημιουργούν μια πλατφόρμα Stewart και παρέχουν μια 3 βαθμών ελευθερίας κινητικότητα σε κάθε σύνδεσμο. Τα ηλεκτρονικά είναι ενσωματωμένα στο εσωτερικό των συνδέσμων, σε αρχιτεκτονική Master-Slave. Η επικοινωνία μεταξύ του χειρούργου και του εργαλείου επιτυγχάνεται με I2C δικτυωμένους μικρο-ελεγχτές, Στον τελευταίο σύνδεσμο του εργαλείου, υπάρχει μια στερεοσκοπική κάμερα και μια πλακέτα IMU η οποία προσφέρει πληροφορίες προσανατολισμού. Επιπρόσθετα, ένα σύστημα αντίληψης δύναμης το οποίο είναι ικανό να επικολληθεί στην επόμενη έκδοση του εργαλείου. Εν κατακλείδι, σχεδιαστικές παράμετροι καθώς και η κινηματική του δυαδικού βραχίονα παρουσιάζεται σε προσομοίωση και πειραματικές μελέτες του λαπαροσκοπικού πρωτότυπου εργαλείου. / The subject of this master thesis is the design, the fabrication, the construction and the control of a surgical robotic tool with improved characteristics than previous version. The laparoscopic tool consists of cascaded links which are powered by Shape Memory Alloys wires, acting as binary actuators with two stable states. Each link is composed of three prismatic actuators, creating a Stewart platform and providing a 3-DOF maneuverability for each joint. The electronics are embedded in the inner cavity of the links in, Master-Slave architecture. The communication between the surgeon and the tool is achieved with I2C-networked microcontrollers. In the distal link of the tool, there is a stereoscopic camera and an IMU board that offers orientation information. Moreover, a Force Sensing System, that is able to be attached to the next version of the current tool. Finally, certain design aspects as well as the kinematics of the binary manipulator are presented simulation and experimental studies on the laparoscopic tool prototype.
408

A Study on 2.45 GHz Bandpass Filters Fabricated With Additive Manufacturing

Arnal, Nicholas Christian 16 September 2015 (has links)
Square open loop resonator (SOLR) bandpass filters fabricated with additive manufacturing techniques are presented and studied. One filter contains novel 3D capacitive plates used to enhance resonator coupling. The filters are centered at 2.45 GHz and loaded with capacitors for miniaturization as low as 21% that of a conventional SOLR bandpass filter. The pass-band insertion loss of the filters ranges from 3.8 dB to 5.5 dB and the 3 dB bandwidth ranges from 180 MHz to 250 MHz. Also, degradation in the effective conductivity of printed ink as a function of substrate roughness is analyzed. Finally, a study of dielectric and metallic 3D printing processes that are candidates for digital manufacturing of integrated mobile phone client antennas is presented.
409

The application of 3D Printing in reconstructive surgery

Honiball, John Robert 03 1900 (has links)
Thesis (MScEng (Industrial Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: As part of a growing trend in the medical industry of patient specific solutions, a need arises for means and methods that could grant surgeons the ability to improve their pre-operative planning, and help streamline their intra-operative proceedings relative to each individual patient. A suitable solution has emerged in the form of Additive Fabrication. Most of the traditional layer manufacturing technologies have been considered to be too expensive for medical application, and could not always be justified. However, more cost effective technologies, such as 3D Printing, have recently come to the scene and definitely require a fresh re-consideration for medical applications. In this report the research results are presented that look at the applications of 3D Printing in various fields of reconstructive surgery. Based on a variety of case studies the outcome strongly suggests that 3D Printing might become part of standard protocol in medical practice in the near future. / AFRIKAANSE OPSOMMING: Tans beweeg die mediese veld al hoe meer in die rigting van pasiënt uniekheid. Dit beteken dat behandeling begin weg beweeg van standaard prosedures en soveel moontlik aagepas word om aan te pas by elke unieke pasiënt. As deel hiervan ontstaan die behoefte by chirurge om hul operasies ook beter te beplan spesifiek tot elke individu, en sodoende te verseker dat die prosedures in teater so glad moontlik verloop. Daar is reeds tegnologië in die vorm van Addidatiewe Vervaardiging wat hierdie probleem aanspreek. Tot op hede was die finansiële implikasies vir meeste van die onderskeie tegnologië ‘n struikelblok wanneer dit kom by mediese toepassings. Tog, danksy meer koste effektiewe tegnologie soos 3D Drukwerk, is dit die moeite werd om weer op nuut te kyk na die moontlikhede wat die tegnologie kan bied. In hierdie verslag word daar gekyk na die verskillende toepassings van 3D Drukwerk in die veld van rekonstruktiewe chirurgie. Op grond van die resultate verkry vanaf ‘n wye verskeidenheid gevalle studies word die gevolgtrekking gemaak dat bekostigbare tegnologie soos 3D Drukwerk ‘n baie goeie kans het om in die nabye toekoms deel te word van standaard prosedure in die mediese praktyk.
410

The development of fibre-reinforced ceramic matrix composites of oxide ceramic electrolyte

Marriner-Edwards, Cassian January 2016 (has links)
Flammable solvents contained in liquid electrolytes pose a serious safety risk when used in lithium batteries. Oxide ceramic electrolytes are a safer alternative, but suffer from inadequate mechanical properties and ionic conductivity. Thin electrolyte layers resolve the issue of conductance, but accentuate the detrimental mechanical properties of oxide ceramics. The presented work has investigated oxide ceramic electrolyte reinforcement in composite electrolytes for all-solid-state batteries. Fabricating oxide ceramic electrolytes with engineered microstructure enabled development of a reinforced composite. This approach is based on the formation of 3D- porous ceramics via stereolithography printing of polymer templates from designed cubic, gyroid, diamond and bijel architectures. The microstructural parameters of templates were analysed and modified using computational techniques. Infiltration of the prepared 3D-porous electrolyte with polymeric-fibre reinforcement created the reinforced composite electrolyte. The prepared ceramic composite showed excellent reproduction of the template microstructure, good retention of ionic conductivity and enhanced mechanical properties. The final composite was composed of NASICON-type Li<sub>1.6</sub>Al<sub>0.6</sub>Ge<sub>1.4</sub>(PO<sub>4</sub>)<sub>3</sub> oxide ceramic electrolyte and epoxy and aramid fibre reinforcement. The gyroid architecture was computationally determined as having the optimal stress transfer efficiency between two phases. The printed gyroid polymer template gave excellent pore microstructure reproduction in ceramic that had 3D-interconnected porosity, high relative density and the most uniform thickness distribution. The ceramic matrix porosity allowed for complete infiltration of reinforcement by aramid and epoxy forming the fibre-reinforced ceramic matrix composite. The interpenetrating composite microstructure with ceramic and epoxy gave a flexural strength increase of 45.65 MPa compared to the ceramic. Unfortunately, the infiltration procedure of aramid-epoxy reinforcement did not realise the full tensile strength potential of aramid fibres.

Page generated in 0.0596 seconds