• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 8
  • 6
  • Tagged with
  • 31
  • 31
  • 11
  • 10
  • 10
  • 9
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

⁴⁰AR/³⁹AR geochronology of biotite from ductile shear zones of the Ellesmere-Devon crystalline terrane, Nunavut, Canadian Arctic

Caswell, Brandon Christopher 01 January 2018 (has links)
This thesis presents a 40Ar/39Ar geochronological analyses of biotite from thin ductile shear zones in Paleoproterozoic granulite-facies gneisses from the Ellesmere-Devon crystalline terrane, Nunavut, Canada. The gneisses are part of the Paleoproterozoic Thelon tectonic zone. U-Pb dates of zircon show that the gneisses have magmatic protolith ages ranging from 2007–1958 Ma. The quartzofeldspathic gneisses in southeast Ellesmere Island display centimeter-scale E- to NE-striking sinistral and dextral mylonite zones offsetting pegmatitic dikes that are the last stage of ductile deformation of the basement rocks. Samples were taken from nearshore outcrops at Hayes Fiord, Pim Island, NE of the Leffert Glacier and NW of Cape Isabella. Biotite clusters replace orthopyroxene as the result of post-granulite facies metamorphism in the gneisses. Biotite in mylonitic and ultramylonitic fabrics is found as flattened clusters and also as individual crystals defining shear bands related to mylonitization. Eight samples were dated, including biotite from five mylonites, one deformed pegmatite, one tonalite and muscovite from a pegmatite. Major element X-ray maps demonstrate that the biotite is chemically homogenous. Backscattered electron images and electron dispersive spectroscopy via scanning electron microscopy confirm that biotite lacks intercrystalline layering with other K phases. Step-heating analysis of mica at the University of Vermont yielded Paleoproterozoic 40Ar/39Ar ages. The apparent age spectra form plateau ages in all but one mylonite sample. Biotite from a protomylonite was 2051 ± 26 Ma, older than the protolith ages obtained from U-Pb zircon geochronology, and most likely indicates excess Ar. Pegmatitic muscovite was 1977 ± 35 Ma. Biotite dates range from 1874 ± 13 Ma to 1838 ± 14 Ma for the five mylonites without excess Ar. Biotite dated from ductile shear zones signals the latest deformation in the basement, which was active as early as 1887 Ma.
12

The First 40Ar/39Ar Ages and Tephrochronologic Framework for the Jurassic Entrada Sandstone in central Utah

Dossett, Toby S. 01 May 2014 (has links) (PDF)
The first 40Ar/39Ar ages of the Middle Jurassic Entrada Sandstone were derived from tephra beds found in central Utah. Eight air fall ash beds in the Entrada Sandstone, with 40Ar/39Ar biotite ages ranging from 168.1 ± 0.2 to 160.8 ± 0.2 Ma, help to establish the age of Entrada deposition. They were also used to create the first chronostratigraphic divisions within the mudstone-dominated Entrada Sandstone. Statistical cluster analysis of chemical data from electron microprobe analyses of phenocrysts were used as a second line of evidence to test absolute age and stratigraphic correlations. The first direct correlations of two distinct air fall ash beds within Jurassic rocks were correlated using three criteria: (1) stratigraphic position, (2) absolute ages, and (3) mineral chemistry. These tephra beds were identified and correlated across significant lateral distances (~40 km) of the San Rafael Swell in central Utah, and one can be correlated farther southwest to Cannonville, Utah (~160 km) using absolute age relationships. This latter tephra bed allows for stratigraphic correlation across significant facies and thickness changes thereby establishing a regional framework that future studies can use to make more accurate and precise litho- and sequence stratigraphic correlations. Absolute ages from a tephra bed ~20 m below the J-3 unconformity provide a lower age boundary for formation of the J-3 surface. Mega- and microfossil assemblages in the overlying Curtis Formation together with the radiometric ages reported in this study indicate that the age of the Callovian-Oxfordian boundary in the 2004 geologic time scale (161.2 ± 4.0 Ma) is more correct than the current boundary age (163.5 ± 1.1 Ma) in the 2012 geologic time scale.
13

Exhumation of the Western Cyclades: A Thermochronometric Investigation of Serifos, Aegean Region (Greece)

Vogel, Heidi A. 21 September 2009 (has links)
No description available.
14

Raccourcissement alpin du massif des Ecrins : cinématique, calendrier tectonique et conditions pression-température / Alpine shortening of the Ecrins massif : kinematics, tectonics calendar and pressure-temperature conditions

Bellanger, Mathieu 13 November 2013 (has links)
Cette étude de terrain du massif des Ecrins (Alpes Occidentales, zone externe) montre que le raccourcissement Alpin est essentiellement accommodé dans le socle par des zones de cisaillement inverse top-vers-l'ouest ductile-fragile (probablement localisé par la présence de demi-graben) ainsi que par les nappes de charriage de la Meije et du Combeynot à l'Est du massif. Les failles normales N-S ne semblent pas avoir été réactivées. Ces zones de cisaillement sont caractérisées par une phengitisation des feldspaths le long de bandes anastomosées dont la géométrie traduit un gradient de déformation qui permet d'expliquer la formation des "plis de socle" soulignée par la géométrie des téguments de Trias. Les températures maximum d'enfouissement liées au charriage des unités internes sont proches de l'isotherme 335°C pour un gradient géothermique compris entre 20 et 25°C.km-1 depuis Bourg d'Oisans au Front Pennique. Les zones de cisaillement ont été datées entre 33 et 25 Ma (40Ar/39Ar sur phengites syn-cinématiques), ce qui suggère qu'elles ont été initiées très tôt après l'enfouissement de la zone externe qui débute vers 34Ma. Les phyllonites présentent des âges plus jeunes que les mylonites, ce qui traduit une localisation de la déformation le long de ces bandes anastomosées de faible résistance entre 30 et 25Ma. Le raccourcissement NO-SE observé le long du Front Pennique semble synchrone des déformations E-O à NESO du massif des Ecrins. La présence d'une zone de cisaillement transpressive senestre diffuse entre le massif des Ecrins et les Alpes Ligures, issu de la réactivation d'une zone de transfert Liasique, permettrait d'expliquer en partie la cinématique d'édification Oligocène des Alpes Occidentales. Au Miocène, la déformation se localise le long d'un plan de chevauchement sous le massif de Belledonne, donnant naissance au Vercors, ainsi que le long du Front Pennique réactivé en faille normale. / This field-based study of the Ecrins massif (Western Alps, external zone) show that the Alpine shortening is accomodated within the basement by brittle-ductile top-to-the-west reverse shear zones (probably localized by half-graben) as well as by the thrust sheets of La Meije and Combeynot to the east of the massif. The N-S normal fault do not seems to be reactivated. These shear zones are characterized by a phengitisation of feldspars along anastomosing planes whose geometry reflect a strain gradient which explain the "basement folds" formation underlined by the geometry of Triassic teguments. The maximum temperatures reach by the cover, due to the burial under the internal nappes are close to the isotherms 335°C for a geothermal gradient close to 20-25°C.km-1 from Bourg d'Oisans to the Penninic Frontal Thrust (PFT). The shear zones were dated between 33 to 25 Ma (40Ar/39Ar on syn-kinematics phengites), suggesting that they were initiated slightly after the burial which start close to 34 Ma. The phyllonites show younger ages than mylonite; that argue a localization of the deformation along these anastomosing planes between 30 to 25Ma and traduce a weak crust. The NW-Se shortening observed alonf the PFT seems to be coeval with the E-W to NE-SW shortening of the Ecrins massif. A sinistrial transpressive diffuse shear zones between the Ecrins massif and the Ligurian Alps, which is probably a reactivated Liassic transfer zone, can explaina part of the Oligocene building kinematics of the Western Alps. During Miocence, the deformation is localized along a crustal thrust under the Belledonne massif, which has given the Vercors massif, and along the PFT, reactivated as a normal fault.
15

Le volcanisme ignimbritique des canyons Ocoña - Cotahuasi (Sud du Pérou) : chronostratigraphie, sources et liens avec la surrection andine

La Rupelle, Aude de 27 September 2013 (has links)
La Cordillère des Andes, issue de la subduction de la plaque Pacifique sous le continent Sud-Américain, est un système orogénique propice à la formation de grands systèmes volcaniques acides, dans lesquels coexistent des produits d’éruptions volcaniques explosives de grandes magnitudes et des laves et dômes, associés à des calderas mono- ou polygéniques. Ce mémoire de thèse apporte de nouvelles connaissances sur certains systèmes volcaniques acides du Sud du Pérou, dont les produits affleurent dans les canyons d’Ocoña-Cotahuasi-Maran (OCM). Ces canyons, les plus profonds des Andes (3 à 3,5 km), résultent de la combinaison des processus de soulèvement tectonique, d’incision, et d’érosion depuis 15 Ma. Les imposantes séries ignimbritiques exposées dans cette région (env. 10000 km²), témoignent de l’existence d’un volcanisme explosif de grande ampleur, associé à des systèmes acides peu connus d’après les études antérieures. Cette étude vise tout d’abord à obtenir une chrono-stratigraphie améliorée des événements ignimbritiques (groupes, unités) dans la région OCM pour mieux connaître les récurrences des super-éruptions dans cette région au cours des derniers 25 Ma. Ensuite, nous cherchons à localiser les sources des grandes unités et à identifier les éventuelles structures d’effondrement associées (calderas). Pour ce faire, nous avons combiné diverses techniques, associant l’étude de la stratigraphie et de la lithologie des dépôts volcaniques, les datations par la méthode 40Ar-39Ar des principales unités ignimbritiques et coulées de lave, l’imagerie satellitaire (Landsat, SPOT) et la pétrologie (assemblages minéralogiques, étude des textures et des compositions chimiques) et enfin, les mesures de densité et d’anisotropie de susceptibilité magnétique des ignimbrites (ASM) pour analyser les directions d’écoulement et tenter de localiser leurs sources. Ainsi, les résultats nous ont permis d’identifier huit événements ignimbritiques, dont six majeurs, datés entre ~24 Ma et ~2 Ma. Les âges des grandes unités (Nazca, Alpabamba, Huaylillas, Caraveli, Sencca inférieure et supérieure) montrent une récurrence moyenne de l’ordre de 4-5 Ma depuis 25 Ma. Les lithologies sont assez semblables, bien que les degrés de soudure varient beaucoup, allant de produits meubles jusqu’aux faciès eutaxitiques. L’étude pétrologique révèle des assemblages de minéraux assez homogènes, les paragenèses étant dominées par le quartz, le feldspath, la biotite, l’amphibole et des oxydes. Les volumes bruts des unités principales que nous avons déterminés se situent entre ~40 et ~500-800 km3. Cependant, il ne s’agit que de valeurs minimales, puisque nous considérons que les volumes initiaux sont au moins le double ou le triple, probablement dans la gamme ~100 à ~2400 km3. La distribution des unités ignimbritiques d’OCM et les résultats des analyses ASM désignent plusieurs zones sources. L’unité de Caraveli provient de la caldera de Trapiche, qui contient le lac Parinacochas. Cette structure que nous identifions, d'un diamètre de ~22 km, est située dans un bassin tectonique allongé selon la direction N-S. Elle est occupée dans sa partie ouest par un dôme résurgent de 800 m de haut, le Cerro Trompo Orjo. Les unités Huaylillas et Alpabamba, ainsi que les groupes Sencca (inférieure et supérieure) seraient issus d’une source entièrement recouverte par le massif volcanique quaternaire du Nevado Coropuna. Des estimations de volumes éruptifs suggèrent une atténuation significative du volcanisme ignimbritique depuis 9 Ma, peut-être liée à la maturation orogénique de l’Altiplano-Puna. En profondeur, le magmatisme a probablement contribué à l’épaississement crustal par adjonction de grands volumes de magma. (...) / The Andes, resulting from the subduction of Pacific plate under South-America continental plate, is an orogenic system suitable for large acidic volcanic systems formation. These structures display at the same time volcanic products from high magnitude explosive eruptions, lavas and domes, and mono- or polygenetic calderas. This manuscript brings a new expertise on some of the acidic volcanic systems in South Peru, which products outcrop in the Ocoña - Cotahuasi - Maran canyons (OCM). This canyons system, one of the deepest worldwide (up to 3.5 km), was created by combined tectonic uplift, incision and erosion processes since 15 Ma. Voluminous ignimbritic series widespread in this region (around 10000 km2) are evidences for a past high amplitude explosive volcanic activity related to little-known acidic systems. The topic of this study is to obtain an enhanced chrono-stratigraphy of the OCM region ignimbritic succession (groups and units). This would provide a better knowledge on the regional super-eruptions recurrence since the last 25 Ma. Then, we focus on localizing the largest ignimbrites sources and identify the possible related collapse structures (calderas). For that purpose we combine several studies, from stratigraphy, deposits lithology to 40Ar-39Ar dating of the main ignimbritic units and lava flows. We also use satellite imagery (Landsat, SPOT) and petrology (mineralogical assemblage, textures and geochemical composition). Finally, we measure the ignimbrites density and anisotropy of magnetic susceptibility (AMS) to determine their flowing directions and estimate their sources locations. Thus, the results let us identify eight ignimbritic events among which, six happened between ~24 Ma and ~2 Ma. The main units ages (Nazca, Alpabamba, Huaylillas, Caraveli, lower and upper Sencca) show an average recurrence of 4-5 Ma since 25 Ma. Lithologies are similar even if welding degrees ranges are spread from loose deposits to eutaxitic facies. Petrological study show quite homogeneous mineralogical assemblages since quartz, feldspar, biotite, amphibole and oxydes dominate the paragenesis. Our estimations of the main units bulk volumes range from ~ 40 to ~ 500-800 km3. However, these are only minimum values since we consider that initial volumes as twice or three times higher, probably in the range of ~100 to ~2400 km3. The OCM ignimbrite flow units distribution and the AMS study results indicate several regions as sources for these units. Caraveli unit flowed from Trapiche caldera in which the Parinacochas lake rests. This structure is estimated to be ~22 km of diameter and lays in a N-S orientated tectonic basin. Its western part is occupied with a 800 m high resurgent dome, named Cerro Trompo Orjo. Alpabamba and Huaylillas units, as Sencca units (lower and upper) would come from a source presently entirely covered with the quaternary massif of Nevado Coropuna. Estimations of eruptive volumes recall an important decrease of ignimbritic volcanism since 9 Ma, which might be related to simultaneous Altiplano-Puna orogenic growing. It is supported that deep magmatism have probably contributed to crustal thickening thanks to the addition of large volumes of magma. These results also involve that canyons erosion and incision would have taken place at a rate ranging from 150 to 500 m/Ma during the last 13 Ma. Given that the large-volume acidic system studied in this work is considerable, further research are necessary to improve these results.
16

Dynamique long‐terme d’une marge continentale divergente (Les Ghâts Occidentaux de l’Inde péninsulaire) : contraintes géochronologiques 40Ar‐39Ar des paléosurfaces latéritiques / Long-term dynamic of a continental passive margin (the Western Ghats of peninsular India) : 40Ar-39Ar geochronological constraints of lateritic paleolandsurfaces

Bonnet, Nicolas 26 January 2015 (has links)
L’Escarpement des Ghâts Occidentaux borde la marge passive Ouest de l’Inde péninsulaire et sépare le bas-pays de la plaine côtière des hauts-plateaux à l’Est comme celui des trapps du Deccan vieux de 63 Ma et celui des roches précambriennes. Il a été suggéré une mise en place de cet escarpement par érosion d’un épaulement de rift élevé, et des mesures thermochronologiques ont estimé une forte dénudation dans la plaine côtière autour de ~ 50 Ma.Nous apportons des contraintes temporelles complémentaires quant à l’évolution de cette marge passive, par datation 40Ar-39Ar d’oxydes de manganèse potassiques (cryptomélane) extraits de formations latéritiques, reliques des paléosurfaces d’altération, sur le plateau et dans la plaine côtière. Trois principales paléosurfaces ont été identifiées, échantillonnées puis datées sur le plateau à différentes altitudes, ainsi qu’une quatrième dans la plaine côtière. Des latérites datées à 47 Ma dans la plaine côtière impliquent que l’escarpement existait déjà à l’Eocène moyen alors qu’une intense altération bauxitique affectait les deux côtés de l’escarpement. Nos résultats indiquent également des taux d’érosion faibles (~ 4 m.Ma-1) au pied de l’escarpement depuis 47 Ma, et un taux d’incision aussi faible (~ 5 m.Ma-1) depuis 19 Ma. Sur le plateau, l’érosion est plus importante mais inférieure à 15 m.Ma-1 depuis 45 Ma, et l’incision est inférieure à 6 m.Ma-1 depuis 23 Ma. Nos résultats indiquent de surcroit un diachronisme longitudinal des érosions et altérations de part et d’autre de l’escarpement depuis sa formation, et suggèrent la mise en place d’un gradient climatique fort entre l’Ouest et l’Est dès l’optimum climatique Eocène. / The western continental passive margin of Peninsular India is marked by the Western Ghats escarpment, which separates the coastal lowland from the highland plateaus and is carved both into the 63-Ma old Deccan Trapps and their Archean basement. Previous studies suggested establishment of the escarpment by erosion across an elevated rift shoulder, and thermochronologic models predicted strong denudation in the coastal lowland by ~ 50 Ma.We provided complementary time constraints on the evolution of the passive margin by 40Ar-39Ar dating of supergene K-Mn oxides (cryptomelane) sampled in lateritic formations exposed on paleosurfaces, which are preserved as relicts on the highland plateau and in the coastal lowland on both sides of the escarpment. Three main lateritic paleosurfaces were identified, sampled and dated in the highland at different altitude ranges, and one in the lowland.Preservation of laterites as old as 47 Ma in the coastal lowland implies that the escarpment already existed in the Mid-Eocene while intense bauxitic weathering was taking place on both sides of the escarpment. Our results indicate limited erosion (~ 4 m.Ma-1) at the foot of the escarpment since 47 Ma, and low incision rate of the lowland (~ 5 m.Ma-1) since 19 Ma. Ages obtained on the highland indicate further Neogene erosion but at less than 15 m.Ma-1 since 45 Ma, and incision lower than 6 m.Ma-1 since 23 Ma. Our results further document post-Eocene divergent erosion and weathering histories across the escarpment since it was formed, suggesting installation of a dual climatic regime on either sides of this escarpment after the Eocene peak greenhouse.
17

Closure of the Neotethys Ocean in Anatolia : structural, petrologic and geochronologic insights from low-grade high-pressure metasediments, Afyon Zone

Pourteau, Amaury January 2011 (has links)
The complete consumption of the oceanic domain of a tectonic plate by subduction into the upper mantle results in continent subduction, although continental crust is typically of lower density than the upper mantle. Thus, the sites of former oceanic domains (named suture zones) are generally decorated with stratigraphic sequences deposited along continental passive margins that were metamorphosed under low-grade, high-pressure conditions, i.e., low temperature/depth ratios (< 15°C/km) with respect to geothermal gradients in tectonically stable regions. Throughout the Mesozoic and Cenozoic (i.e., since ca. 250 Ma), the Mediterranean realm was shaped by the closure of the Tethyan Ocean, which likely consisted in numerous oceanic domains and microcontinents. However, the exact number and position of Tethyan oceans and continents (i.e., the Tethyan palaeogeography) remains debated. This is particularly the case of Western and Central Anatolia, where a continental fragment was accreted to the southern composite margin of the Eurasia sometime between the Late Cretaceous and the early Cenozoic. The most frontal part of this microcontinent experienced subduction-related metamorphism around 85-80 Ma, and collision-related metamorphism affected more external parts around 35 Ma. This unsually-long period between subduction- and collision-related metamorphisms (ca. 50 Ma) in units ascribed to the same continental edge constitutes a crucial issue to address in order to unravel how Anatolia was assembled. The Afyon Zone is a tectono-sedimentary unit exposed south and structurally below the front high-pressure belt. It is composed of a Mesozoic sedimentary sequence deposited on top of a Precambrian to Palaeozoic continental substratum, which can be traced from Northwestern to southern Central Anatolia, along a possible Tethyan suture. Whereas the Afyon Zone was defined as a low-pressure metamorphic unit, high-pressure minerals (mainly Fe-Mg-carpholite in metasediments) were recently reported from its central part. These findings shattered previous conceptions on the tectono-metamorphic evolution of the Afyon Zone in particular, and of the entire region in general, and shed light on the necessity to revise the regional extent of subduction-related metamorphism by re-inspecting the petrology of poorly-studied metasediments. In this purpose, I re-evaluated the metamorphic evolution of the entire Afyon Zone starting from field observations. Low-grade, high-pressure mineral assemblages (Fe-Mg-carpholite and glaucophane) are reported throughout the unit. Well-preserved carpholite-chloritoid assemblages are useful to improve our understanding of mineral relations and transitions in the FeO-MgO-Al2O3-SiO2-H2O system during rocks’ travel down to depth (prograde metamorphism). Inspection of petrographic textures, minute variations in mineral composition and Mg-Fe distribution among carpholite-chloritoid assemblages documents multistage mineral growth, accompanied by a progressive enrichment in Mg, and strong element partitioning. Using an updated database of mineral thermodynamic properties, I modelled the pressure and temperature conditions that are consistent with textural and chemical observations. Carpholite-bearing assemblages in the Afyon Zone account for a temperature increase from 280 to 380°C between 0.9 and 1.1 GPa (equivalent to a depth of 30-35 km). In order to further constrain regional geodynamics, first radiometric ages were determined in close association with pressure-temperature estimates for the Afyon Zone, as well as two other tectono-sedimentary units from the same continental passive margin (the Ören and Kurudere-Nebiler Units from SW Anatolia). For age determination, I employed 40Ar-39Ar geochronology on white mica in carpholite-bearing rocks. For thermobarometry, a multi-equilibrium approach was used based on quartz-chlorite-mica and quartz-chlorite-chloritoid associations formed at the expense of carpholite-bearing assemblages, i.e., during the exhumation from the subduction zone. This combination allows deciphering the significance of the calculated radiometric ages in terms of metamorphic conditions. Results show that the Afyon Zone and the Ören Unit represent a latest Cretaceous high-pressure metamorphic belt, and the Kurudere-Nebiler Unit was affected by subduction-related metamorphism around 45 Ma and cooled down after collision-related metamorphism around 26 Ma. The results provided in the present thesis and from the literature allow better understanding continental amalgamation in Western Anatolia. It is shown that at least two distinct oceanic branches, whereas only one was previously considered, have closed during continuous north-dipping subduction between 92 and 45 Ma. Between 85-80 and 70-65 Ma, a narrow continental domain (including the Afyon Zone) was buried into a subduction zone within the northern oceanic strand. Parts of the subducted continent crust were exhumed while the upper oceanic plate was transported southwards. Subduction of underlying lithosphere persisted, leading to the closure of the southern oceanic branch and to subduct the front of a second continental domain (including the Kurudere-Nebiler Unit). This followed by a continental collisional stage characterized by the cease of subduction, crustal thicknening and the detachment of the subducting oceanic slab from the accreted continent lithosphere. The present study supports that in the late Mesozoic the East Mediterranean realm had a complex tectonic configuration similar to present Southeast Asia or the Caribbean, with multiple, coexisting oceanic basins, microcontinents and subduction zones. / Kontinentale Subduktion resultiert aus dem Abtauchen des ozenanischen Gebiets einer tektonischen Platte in den Oberen Erdmantel. Dies geschieht obwohl die kontinentale Erdkruste normalerweise eine geringere Dichte besitzt als der Obere Erdmantel. Die Lage ehemaliger ozeanischer Gebiete (auch als Suturzonen bezeichnet) ist dementsprechend durch stratigraphische, sedimentäre Gesteinsabfolgen gekennzeichnet, die entlang des passiven Kontinentalrandes abgelagert wurden. Anschließend wurden diese Gesteine unter niedrigen Temperaturen und hohem Druck umgewandelt, auch niedrig-gradige Hochdruckmetamorphose genannt. Während der gesamten Zeitspanne des Mesozoikums und Känozoikums (seit etwa 250 Millionen Jahren bis heute) wurde der mediterrane Raum durch die kontinuierliche Schließung des Tethyschen Ozeans (dem heutigen Mittelmeer) geprägt, der vermutlich in zahlreichen kleineren Ozeanen und Mikrokontinenten aufgeteilt war. Dennoch bleiben die genaue Anzahl und Lage der tethyschen Ozeane und Kontinente (die Paläogeographie der Tethys) bis heute umstritten. Das ist insbesondere der Fall in West- und Zentral-Anatolien, wo im Zeitraum zwischen der Oberen Kreide (vor 98 bis 65 Mio. J.) und dem unteren Känozoikum (vor 65 bis 40 Mio. J.) ein kontinentales Fragment am südlichen Kontinentalrand der Eurasischen Platte angelagert wurde (auch als Akkretion bezeichnet). Der vorderste Bereich von diesem Fragment erfuhr vor etwa 85-80 Millionen Jahren eine metamorphe Umwandlung, die mit den Prozessen der fortschreitenden Subduktion assoziiert werden können. Hingegen wurden die hinteren Bereiche erst später vor ca. 40-30 Mio. J. durch die Kollison der zwei Platten metamorph überprägt. Die ungewöhnlich lange Zeitspanne von etwa 40-50 Mio. J. zwischen den metamorphen Prozessen der Subduktion und der Kollision, stellt eine entscheidende Frage zum Verständnis der Entstehung von Anatolien dar. Die Afyon Zone repräsentiert hierbei eine tektonisch-beanspruchte sedimentäre Gesteinseinheit, die in einer strukturell tieferen Position bezüglich des frontalen metamorphen Hochdruckgürtels liegt und südlich von ihm anzutreffen ist. Die Afyon Zone besteht aus mesozoischen sedimentären Einheiten (250 bis 65 Mio. J. alt), die auf präkambrischem (älter als 545 Mio. J.) bis paläozoischem Untergrund (bis vor 250 Mio J.) abgelagert wurden, und vom nordwestlichen bis zentralen Anatolien, entlang der vermutlichen Tethys-Suturzone, verfolgt werden können. Obwohl die Afyon-Zone als eine niedrig-temperierte metamorphe Gesteinseinheit bezeichnet wird, wurde in letzter Zeit von Vorkommen von Hochdruckmineralen (v.a. Eisen(Fe)-Magnesium(Mg)-Karpholith in metamorphen Sedimenten) im zentralen Bereich berichtet. Diese neuen Erkenntnisse stellen die bisherigen Interpretationen zur tektonisch-metamorphen Entstehung der gesamten Region in Frage, insbesondere der der Afyon-Zone. Deshalb war eine erneute gründliche Überarbeitung und Untersuchung der wenig studierten metamorph-überprägten Sedimentgesteine in diesem Gebiet notwendig. Deshalb, überarbeitete ich die metamorphe Entwicklung der gesamten Afyon Zone, beginnend mit intensiver Geländearbeit und -beobachtungen. Mineralvergesellschaftungen aus Karpholith und Glaukophan, die unter niedrigen Temperaturen und hohem Druck entstanden sind, wurden in der gesamten Gesteinseinheit gefunden. Guterhaltene Mineralvergesellschaftungen aus Karpholith und Chloritoid sind nützlich für das Verständnis unter welchen Temperatur- und Druck-Bedingungen die Gesteine in die Tiefe gelangen (prograde Metamorphose). Durch die Untersuchungen von Gesteinsgefügen und der Eisen-Magnesium-Verteilung zwischen den Mineralien Karpholith und Chloritoid lassen sich Aussagen zu der Bildungstemperatur und dem Druck dieser Minerale machen. Dafür benutzte ich eine verbesserte Datenbank mit Mineraleigenschaften, die mir die Modellierung von Temperatur und Druck erlaubte und im Einklang mit den chemischen und mikroskopischen Beobachtungen steht. Es ergab sich, dass die Karpholith-haltigen Gesteine in der Afyon-Zone einen Temperaturanstieg von 280 zu 380°C (bei einer Tiefe von 30-35 km) erfahren haben. Um noch bessere Aussagen über die Entstehung zu treffen, wurden auch radiometrische Datierungen an Proben aus der Afyon-Zone, sowie an zwei weiteren Sedimentgesteinseinheiten (Ören- und Kurudere-Nebiler-Einheit aus SW Anatolien) gemacht. Für die Altersbestimmung benutzte ich die weitverbreitete 40Ar-39Ar Datierungsmethode an Hellglimmer-Mineralien in den Karpholith-haltigen Gesteinen. Temperatur und Druck können auch bestimmt werden, wenn man den Übergang von einer Mineralvergesellschaftung zu einer anderen Vergesellschaftung beobachtet. Dies gilt zum Beispiel für den Übergang von einer Karpholith-haltigen Zusammensetzung zu einer Quartz-Chlorit-Glimmer und Quartz-Chlorit-Chloritoid Mineralvergesellschaftung wenn tief subduzierte Gesteine wieder nach oben gelangen (Exhumation). Damit lassen sich die radiometrischen Alter den metamorphen Prozessen zu bestimmten Temperaturen und Drücken zuordnen. Mit diesen Erkenntnissen lassen sich die Afyon-Zone und die Ören-Einheit einem Hochdruck-Gebirgsgürtel in der späten Kreidezeit zuordnen, während die Kurudere-Nebiler Einheit durch die mit der Subduktion in Verbindung stehende Metamorphose vor ca. 45 Mio. J. beeinflusst wurde. Später wurde diese Einheit durch die Metamorphose, resultierend aus der Kollision vor 26 Mio. J., abgekühlt. Die Ergebnisse dieser und anderer Arbeiten erlauben es die Anlagerung von Kontinenten in West-Anatolien besser zu verstehen. Es wird gezeigt, dass mindestens zwei (im Gegensatz zu vorher einem) voneinander unabhängige Ozeanarme während der Subduktion von 92 bis 45 Millionen Jahren geschlossen wurden. Zwischen 85-80 und 70-65 Millionen Jahren, wurde ein schmales kontinentales Gebiet (welches die Afyon-Zone beinhaltet) in die Subduktionszone hineingzogen. Teile der subduzierten kontientalen Kruste kamen wieder an die Oberfläche (Exhumation), während die obere ozeanische Platte südwärts transportiert wurde. Die anhaltende Subduktion im oberen Bereich des Erdmantels (Lithosphäre) führte zu der Schließung des südlichen Ozeanarms und zu der Subduktion des zweiten kontinentalen Gebietes (welches die Kurudere-Nebiler-Einheit beinhaltete). Darauf folgte die kontinentale Kollisionsphase unter dem Ausklingen der Prozesse der Subduktion, der Krustenverdickung und der Abtrennung der subduzierten ozeanischen Platte von der akkretionierten kontientalen Lithosphäre (auch als Delamination bezeichnet). Die hier präsentierte Arbeit unterstüzt die Annahme das während der Oberen Kreidezeit das Ost-Mediterrane Gebiet tektonsich komplex angeordnet war, vergleichbar mit dem heutigen Südost-Asien oder der Karibik, mit ihren vielen gleichzeitig existierenden ozeanischen Becken, Mikrokontinenten und Subduktionszonen.
18

Isotopic constraints on timing of deformation and metamorphism in the Thor–Odin dome, Monashee Complex, southeastern British Columbia

Kuiper, Yvette Dominique 10 1900 (has links)
New and existing U–Pb and 40Ar/39Ar geochronological data, and oxygen and hydrogen stable isotope data, are combined with structural and metamorphic data from Thor–Odin, the southern culmination of the Monashee Complex. This leads to a new interpretation of the timing of deformation and metamorphism. Amphibolites in Thor–Odin with hornblende 40Ar/39Ar dates between ~75–70 and ~51 Ma experienced more 18O- and D-depletion than amphibolites with older dates. The younger dates that were previously interpreted as cooling ages, may have resulted from complete or partial Ar loss in the presence of meteoric fluids that were introduced into the rock during extension. <br><br> Monazite crystals in pelitic schist, quartzite and orthogneiss, which have U–Pb ages younger than 40Ar/39Ar hornblende ages in amphibolite in northwest Thor–Odin, may have grown during tension in the presence of fluids. Titanite, xenotime and zircon dates may be interpreted in the same way. Thus, the U–Pb dates that were previously interpreted as representing peak of metamorphism and the hornblende 40Ar/39Ar dates that were previously interpreted as representing cooling ages, may be interpreted as reflecting meteoric fluid penetration of the crust during regional extension. This implies that the age of the thermal peak of metamorphism is older than ~75–70 Ma. Migmatisation in a basement orthogneiss in Thor–Odin occurred at ~1.8 Ga. Dissolution rims are preserved in zircon between ~1.8 Ga domains and 52 Ma overgrowths. Because growth of new zircon (and possibly other U–Pb accessory phases) did not take place, any geological event that occurred during the ~1.8 Ga to 52 Ma time interval is not recorded. Cordilleran deformation and metamorphism may have taken place within that time interval, e.g. in the Middle Jurassic and/or mid- to Late Cretaceous, the time of Cordilleran deformation and metamorphism in the rocks overlying the Monashee Complex. <br><br> The Joss Mountain orthogneiss, west of the Monashee Complex in the Selkirk Allochthon, is dated at 362 +/– 13 Ma. F3 folding in pelitic schist at Joss Mountain is constrained between ~73 and ~70 Ma. Existing structural, metamorphic and geochronological data in, and close to, the Shuswap Metamorphic Complex in the southern Canadian Cordillera are shown to be consistent with a channel flow model.
19

40Ar-39Ar em overgrowths de feldspatos potássicos e U-Pb em zircão – aplicação conjunta para o entendimento da Formação Marizal - Bacia do Recôncavo

Zacca, Patricia Luciana Aver January 2013 (has links)
Unidades litológicas, em particular arenitos, muitas vezes, carecem de um posicionamento cronoestratigráfico preciso. Como os arenitos são importantes rochas-reservatório de hidrocarbonetos e aquíferos, a falta de exatidão nestas informações dificulta a exploração destes bens minerais. A datação relativa de rochas sedimentares pode ser obtida por análise do conteúdo fossilífero ou por correlação estratigráfica. Entretanto, em algumas rochas sedimentares, esta análise não é possível ou tem um caráter duvidoso. Este é o caso da Formação Marizal (Bacia do Recôncavo) que apresenta um histórico controverso sobre a real idade deposicional. A Formação Marizal é um arenito flúvio-eólico cuja idade é discutível e, por isso, sua posição na coluna estratigráfica (aproximadamente Albiniano/Aptiniano), ainda é questionável. Em algumas amostras são encontrados overgrowths de K-feldspatos e nos quais é possível aplicar a técnica de datação 40Ar-39Ar visando obter idades que possam ser relacionadas com processos ocorrentes nestes arenitos (em geral, deposição e/ou diagênese). Entre os minerais pesados existentes nas amostras da Formação Marizal, foram encontrados grãos de zircões. A datação U-Pb de zircões detríticos pode fornecer informações sobre a proveniência desta unidade. Assim, zircões da Formação Marizal foram analisados visando complementar as informações sobre esta unidade, permitindo uma melhor interpretação. Os overgrowths de K-feldspatos indicaram valor de 159.89 ± 23.96 Ma e, para o núcleo detrítico, 432.57 ± 11.89 Ma. O valor médio obtido em torno de 160 Ma, considerando-se que todos os cuidados analíticos e de seleção de amostra foram considerados, é mais antigo do que o esperado. Assim, este valor foi interpretado como indicativo de que o overgrowth teria sido desenvolvido numa rocha fonte sedimentar sendo posteriormente transportado. Esta idade pode ser relacionada a fase pré rifte da Bacia do Recôncavo. O valor confirma ideias existentes de remobilização do substrato da bacia durante a fase rifte. Como tem sido discutido, overgrowths de K-feldspato são estáveis e possíveis de serem transportados por pequenas distâncias, o que corrobora a interpretação acima. Já o valor obtido para o núcleo mostra a contribuição do Paleoprotrozóico adjacente à bacia, retrabalhado no Brasiliano. Em relação ao zircão, a idade do núcleo detrítico de 432,53± 6,54 Ma pode ser associada com a cobertura sedimentar do Paleoproterozóico retrabalhada no ciclo Brasiliano, também observada nos valores U-Pb definidos para os zircões. Em relação ao zircão, os dados indicam ausência aparente de fontes arqueanas. Os resultados mostram duas fontes principais para a sedimentação: uma Rhyaciana (Paleoproterozóico onde ± 53 % dos grãos são “Transamazônicos”) e outra Neoproterozóica-Cambriana (30% dos zircões são “Brasilianos”). / Sandstones represent the most important reservoir rocks and aquifers in many sedimentary basins. It is necessary to have a precise chronostratigraphic position in order to provide a better explotation of water or hydrocarbons. Traditionally, the relative dating of sedimentary units is obtained with fossil content or stratigraphic correlation. But in many sedimentary rocks these analyses are not possible and sometimes have a dubious interpretation. This is the case of the Marizal Formation (Recôncavo Basin) where many questions arise when the age of the unit is questioned. The Marizal Formation is a fluvio-eolic sandstone which has been associated with an Albian/Aptian age in the stratigraphic column, although very discussible. Samples of sandstones of Marizal Formation present an important diagenetic overgrowths around K-feldspar detrital cores and they are suitable to 40Ar-39Ar dating concerning the identification of processes in the sandstones (as diagenesis or depositional ages). Among the heavy mineral suite in the Marizal Formation, zircon grains are identified. The U-Pb dating of detrital zircons can provide information about the provenance of the unit allowing better interpretation to the Marizal Formation. The overgrowths of K-feldspar indicated a value of 159.89 ± 23.96 Ma and to the detrital core, 432.57 ± 11.89 Ma. The mean value obtained around 160 Ma, considering that all care and analytical sample selection were considered, is older than expected. So, this was interpreted as indicating that the overgrowth, have been developed in a sedimentary source rock being transported latter to the depositional site. This age may be related to pre-rift stage of the Recôncavo Basin. The value confirms previous ideas of remobilization of the substrate during the rift basin stage. As has been extensively discussed, overgrowths of K-feldspars are stable and can be transported by small distances, which corroborates the above interpretation. The value obtained to the detrital core can be associated with a Paleoproterozoic sedimentary cover reworked in the Brazilian cycle. For zircon U-Pb dating, the data indicate no apparent Archean sources. The results show two main sources for sedimentation: a Rhyacian (Paleoproterozoic where ± 53% of the grains are "Transamazonian") and another Neoproterozoic-Cambrian (30% of zircon are "Brazilian").
20

Geochronology of Timor-Leste and seismo-tectonics of the southern Banda Arc

Ely, Kim Susan January 2009 (has links)
Arc–continent collision is a significant plate boundary process that results in crustal growth. Since the early stages of evolution are often obscured in mature orogens, more complete understanding of the processes involved in arc–continent collision require study of young, active collision settings. The Banda Arc presents an exceptional opportunity to study a young arc–continent collision zone. This thesis presents aspects of the geology and geochronology of Ataúro and the Aileu Complex of Timor-Leste, and the tectonics of the Banda Arc. / U–Pb dating of detrital zircons from the Aileu Complex by LA-ICPMS show major age modes at 270–440 Ma, 860–1240 Ma and 1460–1870 Ma. The youngest zircon populations indicate a maximum depositional age of 270 Ma. The detrital zircon age populations and evidence for juvenile sediments within the sequence favours a synorogenic setting of deposition of sediments sourced from an East Malaya – Indochina terrane. / Previous uncertainty in aspects of the cooling history for the Aileu Complex is resolved with 39Ar/40Ar geochronology of hornblende. Cooling ages of 6–10 Ma are established, with the highest metamorphic grade parts of the Complex yielding the older ages. Cooling ages of 10 Ma imply that metamorphism of the Aileu Complex must have commenced by at least ~12 Ma. Metamorphism at this time is attributed to an arc setting rather than the direct result of collision of the Australian continent with the Banda Arc, an interpretation consistent with the new provenance data. / Geological mapping of Ataúro, an island in the volcanic Banda Arc north of Timor, reveals a volcanic history of bi-modal subaqueous volcanism. 39Ar/40Ar geochronology of hornblende from dacitic lavas confirms that volcanism ceased by ~3 Ma. Following the cessation of volcanism, coral reef marine terraces have been uplifted to elevations of 700 m above sea level. Continuity of the terraces at constant elevations around the island reflects regional-scale uplift most likely linked to sublithospheric processes such as slab detachment. / North of Timor, the near complete absence of intermediate depth seismicity beneath the inactive segment of the arc is attributed to a slab window that has opened in the collision zone and extends to 350 km below the surface. Differences in seismic moment release around this slab window indicate asymmetric rupture, propagating to the east at a much faster rate than to the west. If the lower boundary of this seismic gap signifies the original slab rupture then the slab window represents ~4 m.y. of subsequent subduction and implies that collision preceded the end of volcanism by at least 1 m.y. / Variations in seismic moment release and stress state across the transition from subduction of oceanic crust to arc–continent collision in the Banda Arc are investigated using earthquake catalogues. It is shown that the slab under the western Savu Sea is unusual in that intermediate depth (70–300 km) events indicate that the slab is largely in down-dip compression at this depth range, beneath a region of the arc that has the closest spacing of volcanoes in the Sunda–Banda arc system. This unusual state of stress is attributed to subduction of a northern extension of the Scott Plateau. Present day deformation in the Savu Sea region may be analogous with the earliest stages of collision north of Timor.

Page generated in 0.037 seconds