1 |
Enzymologie des étapes clés de régulation du système Peroxyrédoxine / Sulfirédoxine dans le contexte de la signalisation cellulaire redox / Enzymology of the key steps regulating Peroxiredoxin / Sulfiredoxin system in the context of redox cell signalingBoukhenouna, Samia 17 November 2014 (has links)
Les peroxyrédoxines (Prx) sont des peroxydases à thiol, ubiquitaires, qui jouent un rôle central dans la physiologie du peroxyde d’hydrogène. Une famille de Prx dite "2-Cys-Prx typique" possède une propriété unique de suroxydation de la Cys catalytique sous forme acide sulfinique, qui constitue un mécanisme de régulation des fonctions des 2-Cys-Prx typiques en tant que peroxydase, capteur de peroxyde ou protéine chaperon. La réduction des 2-Cys-Prx typiques suroxydées est catalysée par la Sulfirédoxine (Srx), une sulfinyl réductase ATP-dépendante dont la constante catalytique est de l’ordre de 1-2 min-1, une valeur faible qui doit être corrélée au rôle de Srx dans la régulation redox. L’objectif de ce travail était d’analyser l’enzymologie de la régulation du système Prx/Srx au niveau, du processus de suroxydation des 2-Cys-Prx typiques, de l’étape limitante de la Srx, et de son recyclage par les systèmes redox cellulaires. Dans un premier temps, nous avons caractérisé les deux étapes du cycle catalytique de la 2-Cys-Prx typique majeure de S. cerevisiae Tsa1, dont la compétition contrôle la sensibilité à la suroxydation, par une stratégie combinant cinétiques rapides, système enzymatique couplé et modélisation cinétique. Ces travaux suggèrent que cette compétition est contrôlée par une réorganisation conformationnelle au cours du cycle catalytique de la Tsa1. Dans un second temps, l’étude de la première étape du mécanisme catalytique de Srx, qui consiste en l’activation ATP-dépendante du groupement acide sulfinique de la 2 Cys-Prx a permis, i) de montrer que l’étape limitante de la réaction catalysée par Srx était associée au processus chimique de transfert de phosphate, et ii) de proposer un modèle d’assemblage du complexe Michaelien Prx/Srx/ATP formé lors de ce processus. Enfin, par une approche combinant cinétiques enzymatiques in vitro et génétique de la levure in vivo, nous avons établi que le mécanisme de recyclage des Srx à 1 Cys existant chez les plantes ou les mammifères implique le rôle du glutathion comme réducteur cellulaire, contrairement à la Srx de S. cerevisiae qui est recyclée par le système thiorédoxine. De façon inattendue, la spécificité du glutathion dans ce mécanisme est assurée par un événement de reconnaissance au sein du complexe Prx/Srx / The peroxiredoxins (Prx) are ubiquitous thiol peroxidases, which play a central role in the physiology of hydrogen peroxide. A subclass of Prx called "typical 2-Cys-Prx" has a unique property to hyperoxidize the catalytic Cys into the sulfinic acid form, which acts as a regulation mechanism of their functions, as peroxidase, peroxide sensor or protein chaperone. The reduction of the overoxidized form is catalyzed by sulfiredoxin (Srx), an ATP-dependent sulfinyl reductase whose catalytic constant is about 1-2 min-1, a low value that must be correlated to the role of Srx in redox regulation. The aim of this study was to analyze the enzymology of the regulation of the Prx/Srx system at three diffrents points of control: the hyper-oxidation process of typical 2-Cys-Prx, the rate-limiting step of the Srx mechanism and the recycling step of Srx by the cellular thiol redox systems. We have first characterized the competition mechanism between the two steps of the catalytic mechanism of the major typical 2-Cys-Prx of S. cerevisiae, Tsa1, through a strategy combining rapid kinetics, coupled enzyme system and kinetic modelling analysis. This work suggests that the sensitivity to hyper-oxidation is controlled by a conformational reorganization during the catalytic cycle of Tsa1. Next, the study of the first step of Srx catalytic mechanism, which involves the ATP-dependent activation of the sulfinic acid form of typical 2-Cys Prx i) has shown that the rate-limiting step is associated with the chemical phosphate transfer process, and ii) provided an assembly model of the Michaelien complex Prx/Srx/ATP, formed during this process. Finally, through the combination of in vitro enzyme kinetics and in vivo yeast genetic tools, we established that the recycling mechanism of one Cys Srx, existing in plants or mammals, involves the glutathione (GSH) as reducer in cells, contrary to the Srx from S. cerevisiae, which is recycled by the Thioredoxin system. Unexpectedly, our study suggests that GSH binds the thiolsulfinate complex, confirming the role of GSH as the primary reducing system of 1-Cys-Srx
|
2 |
Modélisation moléculaire de la réactivité de GABA-AT : de petits modèles représentatifs à la protéine complète, de la mécanique moléculaire à la chimie quantique, du statique au dynamique / Molecular modelling of GABA-AT reactivity : from small representative models to the full protein, from molecular mechanics to quantum chemistry, from static to dynamicsGökcan, Hatice 02 September 2016 (has links)
La compréhension des enzymes et de leurs mécanismes catalytiques est d'une grande importance dans le développement de médicaments plus efficaces Pour mieux appréhender ces phénomènes, différentes approches théoriques comme les méthodes QM, MM-MD et QM/MM, peuvent être utilisées. L'objectif principal de cette thèse est d'obtenir une meilleure compréhension des mécanismes de réactivité et de la dynamique de l'enzyme GABA-AT (y-aminobutyric acid aminotransferase), un modèle d'enzyme dépendante au phosphate pyridoxal (PLP). Notre travail a consisté en 5 étapes vers une plus grande compréhension de GABA-AT. 1) la réaction et le mode d'attachement du substrat naturel GABA ont été étudié pour différents isomères à l'aide de systèmes modèles et de la DFT. 2) l'enzyme a été simulée par dynamique moléculaire classique dans les cas de l'apoenzyme, l'holoenzyme et l'holoenzyme inactivée. Nos résultats montrent que plusieurs résidus du site actif jouent un rôle important et que leur état de protonation ainsi que celui du PLP sont cruciaux dans l'activité de GABA-AT. 3) l'influence des résidus du site actif sur la réactivité a été étudiée par la modélisation quantique de clusters moléculaires. Le plus gros cluster comprenait 165 atomes entouré d'un solvant implicite. 4) de nouvelles routines de diagonalisation pour SEBOMD ont été incorporées dans la suite AMBER à travers l'utilisation des bibliothèques LAPACK et SCALAPACK. Ces nouvelles routines ont été testées et leur efficacité a été évaluée. 5) des énergies libres de réaction ont été évaluées par dynamiques SEBOMD sur des intermédiaires réactionnels GABA-PLP / Understanding enzymes and their catalytic mechanisms is very important in order to develop more effective drugs having little to no side effects. In order to decipher the catalytic behavior of enzymes, different approaches such as QM, MM-MD, and QM/MM can be used and their results can be correlated. The main aim of this thesis is to get a deeper understanding of the mechanistic insights of the reactivity and of the dynamics of the pyridoxal-5-phosphate (PLP) dependent enzyme y-aminobutyric acid aminotransferase (GABA-AT). Because GABA-AT resembles many other PLP-dependent enzymes, understanding it could be of importance for the broad community of biochemists and computational chemists who study such class of proteins. Our work has consisted of five stages to pursuit the comprehension of GABA-AT. First, the reaction and the preferred binding mode of the natural substrate GABA has been elucidated with different isomers by means of model systems with DFT. Second, the dynamics and the behavior of the enzyme has been studied with MM-MD through the use of apoenzyme, holoenzyme and holoenzyme with an inactivator. Third, the effect of the active site residues in the inactivation mechanism has been investigated with the modelling of clusters at the QM level involving key residues. Fourth, new diagonalization routines for the SEBOMD (SemiEmpirical Born-Oppenheimer Molecular Dynamics) approach implemented in the Amber suite of programs, have been incorporated using LAPACK and SCALAPACK libraries, tested and evaluated to optimize the diagonalization procedure of the Fock matrix. Fifth, reaction free energies of PLP containing systems have been investigated with SEBOMD simulations
|
3 |
Regulation of kinases by synthetic imidazoles, nucleotides and their deuterated analoguesNkosi, Thokozani Clement 19 April 2016 (has links)
Deuteration is the replacement of a hydrogen atom by deuterium atom in a molecule. The replacement begins at the most acidic hydrogen in the molecule. In ATP, the deshielded hydrogen is C8-H which is the first replaced during deuteration. During ATP deuteration some of the ATP is hydrolysed to ADP concurrently. Using kinetic analysis, it was confirmed that the ATP hydrolysis that occurs is 1st order in ATP concentration, while the hydrogen replacement is 2nd order. The ATP and its C8 deuterated analogue were tested against three enzymes shikimate kinase (SK), acetate kinase (AK) and glutamine synthetase (GS) to determine if a kinetic isotope effect (KIE) exists in these systems. With AK and GS, the KIED increased as the KIEH decreased, while with SK the KIED decreased as the KIEH increased as the concentration of the ATP or deuterated analogue increased. Deuteration of imidazole and purine compounds reduced the specific activity of AK or SK at low concentrations in an enzyme-catalysed reaction. From a library of imidazole-containing compounds that inhibited SK, three compounds were selected and their IC50 values were determined on the SK-catalysed reaction. These compounds show a differential potency and efficiency between their protonated and deuterated analogues when compared in a 1:1 mixture. Synthesized purines incorporating three different substituents at N-9 were tested against AK or SK for their ability to lower the specific activity of the enzymes used / Physics / M. Sc. (Physics)
|
4 |
Regulation of kinases by synthetic imidazoles, nucleotides and their deuterated analoguesNkosi, Thokozani Clement 19 April 2016 (has links)
Deuteration is the replacement of a hydrogen atom by deuterium atom in a molecule. The replacement begins at the most acidic hydrogen in the molecule. In ATP, the deshielded hydrogen is C8-H which is the first replaced during deuteration. During ATP deuteration some of the ATP is hydrolysed to ADP concurrently. Using kinetic analysis, it was confirmed that the ATP hydrolysis that occurs is 1st order in ATP concentration, while the hydrogen replacement is 2nd order. The ATP and its C8 deuterated analogue were tested against three enzymes shikimate kinase (SK), acetate kinase (AK) and glutamine synthetase (GS) to determine if a kinetic isotope effect (KIE) exists in these systems. With AK and GS, the KIED increased as the KIEH decreased, while with SK the KIED decreased as the KIEH increased as the concentration of the ATP or deuterated analogue increased. Deuteration of imidazole and purine compounds reduced the specific activity of AK or SK at low concentrations in an enzyme-catalysed reaction. From a library of imidazole-containing compounds that inhibited SK, three compounds were selected and their IC50 values were determined on the SK-catalysed reaction. These compounds show a differential potency and efficiency between their protonated and deuterated analogues when compared in a 1:1 mixture. Synthesized purines incorporating three different substituents at N-9 were tested against AK or SK for their ability to lower the specific activity of the enzymes used / Physics / M. Sc. (Physics)
|
Page generated in 0.022 seconds