11 |
Labelling of various macromolecules using positron emitting <sup>76</sup>Br and <sup>68</sup>Ga : Synthesis and characterisationYngve, Ulrika January 2001 (has links)
<p>Different prosthetic groups containing a trialkylstannyl- and an electrophilic group have been synthesised and labelled with the accelerator produced <sup>76</sup>Br (T<sub>1/2</sub>=16 h) through oxidative bromination. The labelled prosthetic groups were conjugated to amino-containing macromolecules such as proteins and 5´-modified oligonucleotides.</p><p><i>N</i>-Succinimidyl 4-[<sup>76</sup>Br]bromobenzoate <b>14 </b>was synthesised in 65 % radio-chemical yield and was conjugated to 5´-hexylamino-modified phosphodiester and phosphorothioate oligonucleotides in 12-19 % isolated radiochemical yield. The stability of the <sup>76</sup>Br-oligonucleotide-conjugates <i>in vivo</i> in rats was investigated. No degradation from the 5´-end, resulting in labelled, low molecular weight compounds was detected. Compound <b>14</b> has also been used for labelling of different proteins in 23-61% radiochemical yield.</p><p><i>N</i>-Succinimidyl-5-[<sup>76</sup>Br]bromo-3-pyridinecarboxylate <b>17</b> and methyl-4-[<sup>76</sup>Br]bromo-benzimidate <b>15 </b>were synthesised from the corresponding trimethylstannyl-compound in 25% and 40 % yield respectively. Compounds <b>14 </b>and <b>17</b> were conjugated to ε-Boc-octreotide in 55 and 50% isolated radiochemical yield respectively after microwave heating. Compound <b>15</b> did not react with octreotide under the conditions investigated. The two <sup>76</sup>Br-labelled octreotide derivatives showed different lipophilicity and different binding-properties to tissue from meningiomas.</p><p>Hyaluronic acid, a polysaccharide, was modified with tyramine and labelled by oxidative bromination using <sup>76</sup>Br in 10% radiochemical yield.</p><p>The generator produced <sup>68</sup>Ga (T<sub>1/2</sub>=68 min) was used to label octreotide and oligonucleotides modified with the metal chelating group 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA). <sup>68</sup>Ga-DOTA-octreotide was isolated in 65% radiochemical yield and a phosphorothioated <sup>68</sup>Ga-DOTA-oligonucleotide was isolated in 35% radio-chemical yield after 30 min synthesis time.</p><p>Compound<b> 14 </b>was reacted with 3-aminomethylbenzylamine to give compound <b>18</b>. The specific radioactivity<b> </b>of<b> 18 </b>was determined to be 36 GBq/µmol by measuring the ratio between the mass-peaks for the <sup>76</sup>Br and <sup>79</sup>Br-compounds using packed-capillary LC-MS.</p>
|
12 |
Labelling of various macromolecules using positron emitting 76Br and 68Ga : Synthesis and characterisationYngve, Ulrika January 2001 (has links)
Different prosthetic groups containing a trialkylstannyl- and an electrophilic group have been synthesised and labelled with the accelerator produced 76Br (T1/2=16 h) through oxidative bromination. The labelled prosthetic groups were conjugated to amino-containing macromolecules such as proteins and 5´-modified oligonucleotides. N-Succinimidyl 4-[76Br]bromobenzoate <b>14 </b>was synthesised in 65 % radio-chemical yield and was conjugated to 5´-hexylamino-modified phosphodiester and phosphorothioate oligonucleotides in 12-19 % isolated radiochemical yield. The stability of the 76Br-oligonucleotide-conjugates in vivo in rats was investigated. No degradation from the 5´-end, resulting in labelled, low molecular weight compounds was detected. Compound <b>14</b> has also been used for labelling of different proteins in 23-61% radiochemical yield. N-Succinimidyl-5-[76Br]bromo-3-pyridinecarboxylate <b>17</b> and methyl-4-[76Br]bromo-benzimidate <b>15 </b>were synthesised from the corresponding trimethylstannyl-compound in 25% and 40 % yield respectively. Compounds <b>14 </b>and <b>17</b> were conjugated to ε-Boc-octreotide in 55 and 50% isolated radiochemical yield respectively after microwave heating. Compound <b>15</b> did not react with octreotide under the conditions investigated. The two 76Br-labelled octreotide derivatives showed different lipophilicity and different binding-properties to tissue from meningiomas. Hyaluronic acid, a polysaccharide, was modified with tyramine and labelled by oxidative bromination using 76Br in 10% radiochemical yield. The generator produced 68Ga (T1/2=68 min) was used to label octreotide and oligonucleotides modified with the metal chelating group 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA). 68Ga-DOTA-octreotide was isolated in 65% radiochemical yield and a phosphorothioated 68Ga-DOTA-oligonucleotide was isolated in 35% radio-chemical yield after 30 min synthesis time. Compound<b> 14 </b>was reacted with 3-aminomethylbenzylamine to give compound <b>18</b>. The specific radioactivity<b> </b>of<b> 18 </b>was determined to be 36 GBq/µmol by measuring the ratio between the mass-peaks for the 76Br and 79Br-compounds using packed-capillary LC-MS.
|
13 |
Production and evaluation of a TiO2 based 68Ge/68Ga generatorBuwa, Sizwe January 2014 (has links)
>Magister Scientiae - MSc / 68Ge/68Ga generators rely on metal oxide, inorganic and organic sorbents in order to prepare radionuclides useful for clinical applications. The requirements for 68Ge/68Ga generators are that the 68Ga obtained from the 68Ge loaded column should be optimally suited for the routine synthesis of 68Ga-labelled radiopharmaceuticals, that the separation of the 68Ga daughter from the 68Ge parent should happen easily, with a high yield of separation, a low specific volume of 68Ga and should not contain trace elements owing to the solubility of the metal oxide sorbent. Beginning with a metal oxide preparation and continuing through recent developments, several approaches for processing generator derived 68Ga have altered the production of 68Ge/68Ga generators. Still, the effects of sorbent modification on the properties of 68Ge/68Ga radionuclide generator systems are not necessarily optimally designed for direct application in a medical context. The objective of this research was to analyze and document characteristics of Titanium Oxide (TiO2) sorbents relevant to processing of a 68Ge/68Ga generator that is able to produce 68Ga eluates that are adequate for clinical requirements. Interest was shown in TiO2 based 68Ge/68Ga generators by a number of overseas companies for tumour imaging using 68Ga-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated peptides. While a method involving production of the 68Ga radionuclide using TiO2 metal oxide had been published, problems with the production persisted. A method, using TiO2 metal oxide for ion exchange chromatography, was devised in this study to produce the 68Ga radionuclide, with the aim of being adopted for production purposes. The study focuses on the development of a dedicated procedure for the achievement of sufficient 68Ga yield along with low 68Ge breakthrough and low metallic impurities. Literature from 1970 to 2011 was reviewed to assess the radiochemical aspects of the 68Ga production and processing thereof. Various commercially available TiO2 metal oxides were characterized by subjecting the materials to x-ray diffraction (XRD), x-ray fluorescence (XRF) and scanning electron microscopy (SEM) for quantitative and qualitative analysis.
|
14 |
Patienters upplevelse av en 68Ga-PSMA-PET/DT-undersökning : En intervjustudieSahlström, Jessica, Englin Vogelpoel, Sanne January 2023 (has links)
Bakgrund: 68Gallium- Prostataspecifikt membranantigen – Positronemissionstomografi/Datortomografi (68Ga-PSMA-PET/DT) är en metod för att undersöka patienter med prostatacancer och eventuella metastaser. Denna undersökningsmetod har gjort att fler patienter kan få en diagnos i ett tidigt skede. Det saknas studier i patientupplevelser kring denna undersökning. Syfte: Syftet med studien är att beskriva patienters upplevelse av en 68Ga-PSMA-PET/DT-undersökning från remiss till utförd bildtagning. Metod: En empirisk kvalitativ intervjustudie med semistrukturerade intervjufrågor genomfördes med 12 patienter. Resultatet analyserades med en induktiv kvalitativ innehållsanalys. Resultat: Resultatet visade att de flesta som intervjuades upplevde att de var välinformerade både muntligt från remitterande läkare, kallelse och den muntliga informationen som gavs under undersökningen. Majoriteten av patienterna upplevde inget obehag eller oro kring de olika momenten av undersökningen. Det framkom att muntlig information gällande risker med strålning till allmänheten inte givits till alla patienterna och studien fann att det fanns förbättringsbehov inom det området. Några upplevde att det var obehagligt att behöva ta diuretika, dricka vatten samt att ligga länge i PET/DT- kameran. Några av patienterna tyckte att undersökningen tog lång tid. Slutsats: Studien visade att de flesta av patienterna kände sig välinformerade och väl bemötta. Studien fann däremot att det finns förbättringsområden vad gäller information efter undersökningen. Några patienter upplevde vissa förberedande moment som ansträngande, men en majoritet upplevde inga problem med undersökningen.
|
15 |
Microparticules à base d’amidon (SBMP) comme agent théranostique unique pour la radiothérapie sélective interne des tumeurs hépatiques : radiomarquage au gallium-68 et rhénium-188 et étude préliminaire in vivo / Starch-Based Microparticles (SBMP) as unique theragnostic agent for the selective internal radiation therapy of hepatic tumours : radiolabeling and preliminary in vivo studyVerger, Elise 07 December 2016 (has links)
Le Carcinome Hépatocellulaire a une incidence mondiale élevée et est associé à un mauvais pronostic. Les traitements curatifs existants ne sont applicables qu’à une minorité de patients. La radiothérapie sélective interne (SIRT) est un traitement palliatif de plus en plus utilisé. Elle consiste à l’injection sélective intra-tumorale de microsphères d’yttrium-90 par infusion intra-artérielle, et repose sur deux étapes : une étape pré-thérapeutique de simulation du traitement avec l’injection de macroagrégats d’albumines marqués au 99mTc et le traitement en lui-même. Cependant les caractéristiques de ces deux vecteurs diffèrent et peuvent conduire à des variations de biodistribution et à une dosimétrie approximative. Ce travail a pour but de développer un vecteur radiothéranostique unique pour la SIRT : les microparticules à base d’amidon (SBMP), afin de pallier aux différents problèmes rencontrés en clinique. L’optimisation du radiomarquage par le 68Ga et le 188Re sous forme de kits lyophilisés prêts-à-l’emploi, a permis d’obtenir une pureté radiochimique > 98 % et > 95 % respectivement. Une étude préliminaire par imagerie TEP/TDM in vivo chez le rat, suite à l’injection intraartérielle des 68Ga-SBMP a montré une biodistribution spécifique des microparticules avec plus de 95 % de l’activité retrouvée dans le foie et plus particulièrement dans les tumeurs. Les SBMP offrent plusieurs avantages répondant à différents problèmes actuels et constituent un agent théranostique prometteur pour la SIRT. Une présentation de la SIRT, des différentes microparticules en développement pour la SIRT et des modèles animaux de tumeur hépatique existants seront également développées dans ce travail. / The Hepatocellular Carcinoma has a high incidence worldwide and is associated with a bad prognostic. The existing curative treatments can only be apply in a minority of cases. The selective internal radiation therapy (SIRT) is a palliative treatment that is increasingly used. This technique is define by the selective intratumoral injection of yttrium-90microspheres via intra-arterial infusion. It involves two steps : a pre-therapeutic one for treatment simulation purpose with the injection of serum albumin macroaggregates radiolabeled with 99mTc and the treatment itself. However the characteristics of these two vectors are different and can lead to variations in biodistribution and approximate dosimetry. This works aims to develop a unique radiotheranostic vector for the SIRT: the starch-basedmicroparticles (SBMP), in order to overcome the different currents clinical problems. The optimization of the radiolabeling by the 68Ga and the 188Re in the form of ready-to-use radiolabeling kits allowed to obtain a radiochemical purity > 98 % and > 95 % respectively. A preliminary in vivo study by PET/CT imaging in rat, following the intra-arterial injection of 68Ga-SBMP displayed a specific biodistribution of the microparticles with more than 95 % of the activity found in the liver and mostly in the tumors. The SBMP offer several advantages that answer different current issues and area promising theranostic agent for the SIRT. A presentation of the SIRT, the different microparticles in development and the existing animal models of hepatic tumor will also be developed in this work.
|
16 |
Qualification of in-house prepared 68Ga RGD in healthy monkeys for subsequent molecular imaging of αvβ3 integrin expression in patients / Isabel SchoemanSchoeman, Isabel January 2014 (has links)
Introduction: Targeted pharmaceuticals for labelling with radio-isotopes for very specific
imaging (and possibly later for targeted therapy) play a major role in Theranostics which is
currently an important topic in Nuclear Medicine as well as personalised medicine. There
was a need for a very specific lung cancer radiopharmaceutical that would specifically be
uptaken in integrin 3 expression cells to image patients using a Positron Emission
Tomography- Computed Tomography (PET-CT) scanner.
Background and problem statement: Cold kits of c (RGDyK)–SCN-Bz-NOTA were kindly
donated by Seoul National University (SNU) to help meet Steve Biko Hospital’s need for
this type of imaging. These cold kits showed great results internationally in labelling with a
0.1 M 68Ge/68Ga generator (t1/2 of 68Ge and 68Ga are 270.8 days and 67.6 min,
respectively). However the same cold kits failed to show reproducible radiolabeling with the
0.6 M generator manufactured under cGMP conditions at iThemba LABS, Cape Town and
distributed by IDB Holland, the Netherlands.
Materials and methods: There was therefore a need for producing an in-house NOTA-RGD
kit that would enable production of clinical 68Ga-NOTA-RGD in high yields from the IDB
Holland/iThemba LABS generator. Quality control included ITLC in citric acid to observe
labelling efficiency as well as in sodium carbonate to evaluate colloid formation. HPLC was
also performed at iThemba LABS as well as Necsa (South African Nuclear Energy
Corporation). RGD was obtained from Futurechem, Korea. Kit mass integrity was
determined by testing labelling efficiency of 10, 30 and 60 μg of RGD per cold kit. The
RGD was buffered with sodium acetate trihydrate. The original kits were dried in a
desiccator and in later studies only freeze dried. Manual labelling was also tested. The
radiolabelled in-house kit’s ex vivo biodistribution in healthy versus tumour mice were
examined by obtaining xenografts. The normal biodistribution was investigated in three
vervet monkeys by doing PET-CT scans on a Siemens Biograph TP 40 slice scanner.
Results: Cold kit formulation radiolabeling and purification methods were established
successfully and SOPs (standard operating procedures) created. HPLC results showed
highest radiochemical purity in 60 μg cold kit vials. 68Ga-NOTA-RGD showed increased
uptake in tumours of tumour bearing mouse. The cold kit also showed normal distribution
according to literature with fast blood clearance and excretion through kidneys into urine,
therefore making it a suitable radiopharmaceutical for clinical studies.
Conclusion: The in-house prepared cold kit with a 4 month shelf-life was successfully
tested in mice and monkeys. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
|
17 |
Qualification of in-house prepared 68Ga RGD in healthy monkeys for subsequent molecular imaging of αvβ3 integrin expression in patients / Isabel SchoemanSchoeman, Isabel January 2014 (has links)
Introduction: Targeted pharmaceuticals for labelling with radio-isotopes for very specific
imaging (and possibly later for targeted therapy) play a major role in Theranostics which is
currently an important topic in Nuclear Medicine as well as personalised medicine. There
was a need for a very specific lung cancer radiopharmaceutical that would specifically be
uptaken in integrin 3 expression cells to image patients using a Positron Emission
Tomography- Computed Tomography (PET-CT) scanner.
Background and problem statement: Cold kits of c (RGDyK)–SCN-Bz-NOTA were kindly
donated by Seoul National University (SNU) to help meet Steve Biko Hospital’s need for
this type of imaging. These cold kits showed great results internationally in labelling with a
0.1 M 68Ge/68Ga generator (t1/2 of 68Ge and 68Ga are 270.8 days and 67.6 min,
respectively). However the same cold kits failed to show reproducible radiolabeling with the
0.6 M generator manufactured under cGMP conditions at iThemba LABS, Cape Town and
distributed by IDB Holland, the Netherlands.
Materials and methods: There was therefore a need for producing an in-house NOTA-RGD
kit that would enable production of clinical 68Ga-NOTA-RGD in high yields from the IDB
Holland/iThemba LABS generator. Quality control included ITLC in citric acid to observe
labelling efficiency as well as in sodium carbonate to evaluate colloid formation. HPLC was
also performed at iThemba LABS as well as Necsa (South African Nuclear Energy
Corporation). RGD was obtained from Futurechem, Korea. Kit mass integrity was
determined by testing labelling efficiency of 10, 30 and 60 μg of RGD per cold kit. The
RGD was buffered with sodium acetate trihydrate. The original kits were dried in a
desiccator and in later studies only freeze dried. Manual labelling was also tested. The
radiolabelled in-house kit’s ex vivo biodistribution in healthy versus tumour mice were
examined by obtaining xenografts. The normal biodistribution was investigated in three
vervet monkeys by doing PET-CT scans on a Siemens Biograph TP 40 slice scanner.
Results: Cold kit formulation radiolabeling and purification methods were established
successfully and SOPs (standard operating procedures) created. HPLC results showed
highest radiochemical purity in 60 μg cold kit vials. 68Ga-NOTA-RGD showed increased
uptake in tumours of tumour bearing mouse. The cold kit also showed normal distribution
according to literature with fast blood clearance and excretion through kidneys into urine,
therefore making it a suitable radiopharmaceutical for clinical studies.
Conclusion: The in-house prepared cold kit with a 4 month shelf-life was successfully
tested in mice and monkeys. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2014
|
18 |
Radiolabelled Oligonucleotides for Evaluation of in vivo Hybridisation Utilising PET MethodologyLendvai, Gábor January 2007 (has links)
<p>Antisense oligonucleotides (ODN) may interfere in gene expression on the basis of hybridising to its complementary messenger RNA (mRNA) sequence in the cell thereby preventing the synthesis of the peptide. Therefore, these ODNs may be potential drugs to treat human diseases by “knocking down” the expression of responsible genes or correcting the maturation process of mRNA in the field called antisense therapy. Moreover, antisense ODNs upon labelling are also potential imaging agents to monitor gene expression <i>in vivo</i>, i.e. to accomplish <i>in vivo</i> hybridisation. This would provide a non-invasive tool compared to present methods, which require tissue samples. </p><p>This goal may be reached using positron emission tomography (PET) methodology. PET is a most advanced <i>in vivo</i> imaging technology, which would allow exploring the fate of radionuclide-labelled antisense ODNs in the body; thereby providing information about biodistribution and quantitative accumulation in tissues to assess pharmacokinetic properties of ODNs. This kind of evaluation is important as part of the characterisation of antisense therapeutics but also as part of the development of antisense imaging agents.</p><p>The present study aimed to investigate <sup>76</sup>Br- and <sup>68</sup>Ga-labelled ODNs of five different modifications: phosphodiester, phosphorothioate, 2'-<i>O</i>-methyl phosphodiester, locked nucleic acid (LNA), and peptide nucleic acid. The study included exploration of the hybridisation abilities of these ODNs after labelling; furthermore, the biodistribution, metabolite analysis and uptake of the ODNs in rats regarding non-hybridisation and hybridisation specific uptake was conducted. Among the ODNs studied, LNA-DNA mixmer (LNA and DNA nucleotides in alternation along the sequence) displayed the most promising characteristics considering a higher retention in tissues, stability and longer plasma residence. However, biodistribution data demonstrated a non-hybridisation specific distribution in rat tissues with kidney, liver, spleen and bone marrow being the organs of high uptake. Scavenger receptors or other saturable processes unrelated to hybridisation may play a role in tissue uptake and in clearance of antisense ODNs through these organs. These processes may be sequence dependent suggesting that proof of <i>in vivo</i> hybridisation through imaging needs much more elaborate evaluations than just comparison of sense and antisense sequences and proving dose-dependency.</p>
|
19 |
Radiolabelled Oligonucleotides for Evaluation of in vivo Hybridisation Utilising PET MethodologyLendvai, Gábor January 2007 (has links)
Antisense oligonucleotides (ODN) may interfere in gene expression on the basis of hybridising to its complementary messenger RNA (mRNA) sequence in the cell thereby preventing the synthesis of the peptide. Therefore, these ODNs may be potential drugs to treat human diseases by “knocking down” the expression of responsible genes or correcting the maturation process of mRNA in the field called antisense therapy. Moreover, antisense ODNs upon labelling are also potential imaging agents to monitor gene expression in vivo, i.e. to accomplish in vivo hybridisation. This would provide a non-invasive tool compared to present methods, which require tissue samples. This goal may be reached using positron emission tomography (PET) methodology. PET is a most advanced in vivo imaging technology, which would allow exploring the fate of radionuclide-labelled antisense ODNs in the body; thereby providing information about biodistribution and quantitative accumulation in tissues to assess pharmacokinetic properties of ODNs. This kind of evaluation is important as part of the characterisation of antisense therapeutics but also as part of the development of antisense imaging agents. The present study aimed to investigate 76Br- and 68Ga-labelled ODNs of five different modifications: phosphodiester, phosphorothioate, 2'-O-methyl phosphodiester, locked nucleic acid (LNA), and peptide nucleic acid. The study included exploration of the hybridisation abilities of these ODNs after labelling; furthermore, the biodistribution, metabolite analysis and uptake of the ODNs in rats regarding non-hybridisation and hybridisation specific uptake was conducted. Among the ODNs studied, LNA-DNA mixmer (LNA and DNA nucleotides in alternation along the sequence) displayed the most promising characteristics considering a higher retention in tissues, stability and longer plasma residence. However, biodistribution data demonstrated a non-hybridisation specific distribution in rat tissues with kidney, liver, spleen and bone marrow being the organs of high uptake. Scavenger receptors or other saturable processes unrelated to hybridisation may play a role in tissue uptake and in clearance of antisense ODNs through these organs. These processes may be sequence dependent suggesting that proof of in vivo hybridisation through imaging needs much more elaborate evaluations than just comparison of sense and antisense sequences and proving dose-dependency.
|
20 |
Development of 18F- and 68Ga-Labelled Tracers : Design Perspectives and the Search for Faster SynthesisBlom, Elisabeth January 2009 (has links)
This thesis deals with the design of 18F- and 68Ga-labelled positron emission tomography (PET) tracers and the development of technologies that enable faster and simpler preparation with high specific radioactivity. Techniques like microwave heating and reducing the concentrations of the precursor were investigated with this perspective. A few applications were explored using molecular design perspectives. A nucleophilic 18F-labelling strategy using perfluoro-containing leaving groups was explored. We observed that [18F]fluoride was interacting with the perfluoro alkyl chains of the substrate, preventing the nucleophilic substitution from taking place. When a perfluoroaryl group was instead used in the leaving group, the substitution took place and purification by fluorous solid-phase extraction was possible. 18F-Labelled analogues of the monoamine oxidase-A inhibitor harmine were prepared by one-step nucleophilic fluorinations and evaluated by in vitro autoradiography, showing high specific binding. Biotin analogues labelled with 18F and 68Ga were prepared and their binding to avidin evaluated. All analogues retained their binding ability and will be further evaluated in transplantation models with avidin-coated islets of Langerhans. Peptide design perspectives were used in some examples where the Arg-Gly-Asp (RGD) sequence and a single-chain version of vascular endothelial growth factor (VEGF) protein functionalized with 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) or 2,2',2''-(1,4,7-triazonane-1,4,7-triyl)triacetic acid (NOTA) as chelators were labelled with 68Ga. The RGD motif and VEGF have high affinity for, respectively, αvβ3 integrin and VEGFR-2 receptor that are overexpressed in angiogenesis process. The 68Ga-labelled scVEGF maintained its functional activity in vitro. A polypeptide conjugate containing phosphocholine, which has affinity for the C-reactive protein released during the inflammatory process, was labelled with 68Ga for the development of an imaging agent for inflammation in vivo. Finally [18F]/19F exchange in fluorine-containing compounds was studied in order to investigate whether the exchange reaction can be of practical use for labelling.
|
Page generated in 0.0293 seconds